Este documento hace públicos los procedimientos y los datos utilizados para analizar la incidencia delictiva en Querétaro, en arreglo con los datos del SESNSP.
Te indicamos dónde descargar los datos, y cómo procesarlos en R. La base de datos es demasiado grande para abrirse en excel, así que necesitarás un software estadístico.
Resumen
- Entre Mayo y Junio Querétaro es el 20 estado con la tasa de crecimiento más alta. El delito en Querétaro disminuyó -4.53%, al pasar de 5165 a 4931 carpetas de investigación; en tanto que a nivel nacional el delito disminiuyó en -3.4%. Querètaro es el sèptimo estado con mayor tasa de delitos por cada 100 mil habitantes.
- En el segundo trimestre de 2022 se acumularon 14820 carpetas de investigación; Es el trimestre màs inseguro en tres años, desde el tercero de 2019, cuando se registraron 15231 carpetas.
- Cuatro delitos alcanzaron máximo histórico en junio: Acoso sexual (87), Falsedad (20), Hostigamiento sexual (8) y otros delitos que atentan contra la libertad personal (22).
- A la mitad del año, Querètaro ocupa el primer lugar nacional en Acoso sexual, Otros robos, Violencia de género en todas sus modalidades distinta a la violencia familiar, es decir en dos delitos cometidos contra mujeres; ademàs, ocupa el segundo lugar nacional en Otros delitos que atentan contra la vida y la integridad corporal, y el tercero en Aborto y en Robo en transporte individual.
- En junio, los delitos más frecuentes fueron:
-
Otros robos: 938
-
Violencia familiar: 472
-
Otros delitos del Fuero Común: 398
-
Lesiones dolosas: 372
-
Amenazas: 337
-
Fraude: 319
-
Robo de vehículo automotor: 313
-
Robo a negocio: 226
-
Robo a casa habitación: 208
-
Daño a la propiedad: 145
-
Narcomenudeo: 140
- A propósito de las declaraciones de la presidenta estatal del PAN: El muncipio de El Marqués llama la atención en tres delitos: Acumula 9 casos de homicidio doloso en la primera mitad del añó; en todo el año pasado acumuló 10. El segundo en narcomenudeo: en todo 2021 acumuló 175 carpetas; en lo que va de 2022 lleva 198. Con 43 carpetas en junio, el municipio alcanzó un máximo histórico en este delito. Finalmente, Violencia de género en todas sus modalidades distinta a la violencia familiar: en 2021 se registraron 11 carpetas; a mitad de 2022 van 24.
- Cadereyta de Montes registró 23 carpetas por Violencia familiar en junio. Nunca habìa registrado tantas en un solo mes. En el acumulado anual, es el delito más frecuente en este municipio.
- En Ezequiel Montes crece el Robo a transeúnte en vía pública; en los primeros seis meses de 2021 se registraron 3 carpetas por este delito; en la primera mitad de 2022, van 18.
- El municipio capital registra 5 carpetas por secuestro en lo que va del año; en todo el año pasado fueron 4. En la capital también destaca el Hostigamiento sexual, que ha acumulado 21 carpetas en seis meses. En todo 2021 se registraron 3. Lo mismo ocurre con Violencia de género en todas sus modalidades distinta a la violencia familiar: van 220 carpetas, contra las 111 del año pasado.
- Corregidora destaca por el delito de fraude. En la primera mitad de 2022 se han registrado 318 carpetas por este delito. En todo 2021 se registraron 270. Tambiémnn destaca el abuso de confianza. En los primeros seis meses van 65 casos; en el mismo periodo del año pasado, el municipio acumulaba 30.
- A nivel nacional, en el acumulado anual, Querétaro ocupa el lugar 17 en comercio de narcóticos; el lugar 2 en tráfico; el lugar 3 en transporte; el lugar 8 en posesión; el lugar 11 en producción y el lugar 4 en suministro de narcóticos. Esto en cuanto a los delitos del fuero federal.
#plotly nos ayudará con los gráficos
library(reshape2)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
#Cargo kintr para ver las tablas
library(knitr)
library(xlsx)
#instalo reshape2 para transformar la estructura de las bases de datos
#indico el directorio de trabajo; si quieres trabajar en C:/, descargas o alguna otra carpeta, deberás modificar esta línea.
setwd("D:/")
#la base de datos de población de CONAPO viene en dos partes, las descomprimimos
elzip<-unzip("Municipal-Delitos-2015-2021_ene2021.zip", list = TRUE)
elzip<-unzip("Municipal-Delitos-2015-2021_ene2021.zip", elzip$Name[9])
#las leemos
pop1<-read.table("base_municipios_final_datos_01.csv",TRUE,",")
pop2<-read.table(file = "base_municipios_final_datos_02.csv",header = TRUE,sep = ",")
#Las fusionamos
pop<-rbind(pop1,pop2)
#cambiamos los nombres para evitar problemas de codificacipon
names(pop)<-names(pop)<-c(names(pop[1:6]),"ANO",names(pop[8:9]))
#Creo una tabla con la población por cada entidad federativa
names(pop)[7]<-"ANO"
years=unique(pop$ANO)
ent=unique(pop$CLAVE_ENT)
ent<-as.data.frame(ent)
for(i in 1:length(years)){
a<-subset(pop,pop$ANO==years[i])
tpob<-aggregate(a$POB~a$CLAVE_ENT,a,sum)
tpobDF<-as.data.frame(tpob)
tpobDF<-tpobDF[,2]
ent<-cbind(ent,tpobDF)
}
names(ent)<- c("Entidad", paste0("year",years))
### AHORA LOS DATOS DE SESNSP
#DELITOS
esteMes<-"Junio"
anterior<- "Mayo"
proximo<-"Agosto" ## Aqui va el mes siguiente al de la publicacion de los datos de SESNSP, no el mes actual
ruta<-"D:/Municipal-Delitos-2015-2022_jun2022/Municipal-Delitos-2015-2022_jun2022/Municipal-Delitos-2015-2022_jun2022.csv"
federales<-read.xlsx(file = "D:/Incidencia del fuero federal 2012-2022_jun2022/Incidencia del fuero federal 2012-2022_jun2022.xlsx",sheetName = "2012-2022",as.data.frame = T)
#+Municipal-Delitos-2015-2020_mar2020/
#+Municipal-Delitos-2015-2020_mar2020.csv"
delitos<-read.csv(file = ruta,header = TRUE,sep = ",")
names(delitos)<-c("Ano",names(delitos[2:21]))
delitos2<-melt(
data = delitos,
id.vars = names(delitos[1:9]),
measure.vars = names(delitos[10:21]),
variable.name = "meses")
delitos2$value[is.na(delitos2$value)]<-0
queMes<-levels(delitos2$meses)
for (i in 1:length(queMes)) {
if(queMes[i]==esteMes){elActual<-i+1}
}
Delitos por estado (Serie Anual)
losAnos<-unique(delitos2$Ano)
porEstadoAnual<-as.data.frame(order(unique(delitos2$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos2,delitos2$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
porEstadoAnual<-cbind(porEstadoAnual,mitab)
}
names(porEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
tasaPorEstadoAnual<-porEstadoAnual
micol=ncol(porEstadoAnual)
tasaPorEstadoAnual[,2:micol]<-round(porEstadoAnual[,2:micol]/ent[,2:micol]*100000,2)
nomEnt<-c()
for (i in 1:32) {
nomEnt<-c(nomEnt,delitos2$Entidad[delitos2$Clave_Ent==i][1])
}
for (i in 1:length(nomEnt)) {
porEstadoAnual[i,1]<-nomEnt[i]
tasaPorEstadoAnual[i,1]<-nomEnt[i]
}
Serie Anual (Absolutos)
kable(porEstadoAnual)
Aguascalientes |
23212 |
23729 |
33548 |
38834 |
38429 |
33626 |
35645 |
19646 |
Baja California |
119944 |
109109 |
111722 |
103028 |
104013 |
92168 |
98085 |
52248 |
Baja California Sur |
21415 |
24606 |
24174 |
23438 |
22644 |
18254 |
18677 |
10163 |
Campeche |
1886 |
2237 |
2056 |
2157 |
2312 |
2003 |
5611 |
12173 |
Coahuila de Zaragoza |
46569 |
51242 |
56311 |
56308 |
52937 |
48461 |
56045 |
34056 |
Colima |
6562 |
13226 |
24425 |
24494 |
26554 |
25370 |
28368 |
14302 |
Chiapas |
21618 |
22189 |
25364 |
28892 |
23294 |
17269 |
17130 |
8618 |
Chihuahua |
61280 |
57904 |
68819 |
68904 |
71839 |
66835 |
73002 |
36827 |
Ciudad de México |
169701 |
179720 |
204078 |
241031 |
242839 |
198159 |
223685 |
114532 |
Durango |
29088 |
32183 |
34851 |
31903 |
30338 |
26024 |
29479 |
13558 |
Guanajuato |
95782 |
106265 |
117857 |
133749 |
137658 |
122870 |
134626 |
70098 |
Guerrero |
36783 |
36561 |
32799 |
27695 |
27344 |
23874 |
24628 |
13500 |
Hidalgo |
27504 |
33754 |
43963 |
51222 |
49750 |
41260 |
46464 |
26447 |
Jalisco |
95331 |
136820 |
166599 |
162756 |
156654 |
126600 |
128587 |
64388 |
México |
323525 |
325038 |
345693 |
341028 |
354602 |
341278 |
389493 |
203903 |
Michoacán de Ocampo |
30899 |
32558 |
41836 |
45190 |
46753 |
45888 |
46877 |
22846 |
Morelos |
49245 |
45448 |
44329 |
44936 |
43191 |
40491 |
42301 |
22181 |
Nayarit |
6651 |
3668 |
3220 |
4545 |
4642 |
4165 |
5072 |
3553 |
Nuevo León |
72350 |
84746 |
83974 |
81125 |
75871 |
78949 |
94321 |
51139 |
Oaxaca |
6127 |
31607 |
31938 |
41989 |
43788 |
39061 |
41583 |
22167 |
Puebla |
64399 |
51061 |
53800 |
61172 |
76556 |
63587 |
75141 |
39422 |
Querétaro |
32817 |
42900 |
53379 |
57809 |
60515 |
52026 |
53944 |
28143 |
Quintana Roo |
32496 |
18958 |
26518 |
34043 |
45896 |
40751 |
47753 |
24963 |
San Luis Potosí |
21419 |
28613 |
35179 |
38362 |
52288 |
45808 |
51070 |
27184 |
Sinaloa |
25812 |
22141 |
22931 |
23486 |
23443 |
23910 |
27386 |
14985 |
Sonora |
28659 |
39423 |
25969 |
18197 |
23438 |
31090 |
37301 |
16877 |
Tabasco |
57452 |
59434 |
60395 |
58271 |
56561 |
45014 |
48715 |
22606 |
Tamaulipas |
44527 |
48528 |
47163 |
44048 |
42413 |
31844 |
36636 |
18294 |
Tlaxcala |
8317 |
6775 |
6964 |
6369 |
4411 |
4141 |
4527 |
2353 |
Veracruz de Ignacio de la Llave |
45539 |
42312 |
66379 |
60758 |
89822 |
79259 |
88308 |
43664 |
Yucatán |
34716 |
34288 |
24390 |
13129 |
16419 |
8417 |
8565 |
2096 |
Zacatecas |
16179 |
17136 |
18874 |
21070 |
23952 |
22742 |
25110 |
12737 |
Serie Anual (Tasa por 100 mil habitantes)
kable(tasaPorEstadoAnual)
Aguascalientes |
1742.87 |
1750.80 |
2438.47 |
2782.22 |
2715.02 |
2343.87 |
2452.44 |
1334.77 |
Baja California |
3572.11 |
3205.94 |
3226.28 |
2925.90 |
2906.56 |
2535.66 |
2658.01 |
1395.36 |
Baja California Sur |
2974.94 |
3338.69 |
3204.95 |
3038.79 |
2873.17 |
2268.40 |
2274.75 |
1213.97 |
Campeche |
205.71 |
239.65 |
216.32 |
222.99 |
234.95 |
200.18 |
551.71 |
1178.16 |
Coahuila de Zaragoza |
1552.01 |
1683.90 |
1823.63 |
1797.82 |
1666.97 |
1505.60 |
1718.51 |
1030.99 |
Colima |
909.25 |
1800.28 |
3267.11 |
3221.48 |
3435.89 |
3231.22 |
3558.25 |
1767.61 |
Chiapas |
407.29 |
411.37 |
462.90 |
519.28 |
412.46 |
301.36 |
294.72 |
146.23 |
Chihuahua |
1694.46 |
1586.66 |
1865.32 |
1848.29 |
1907.91 |
1758.13 |
1902.83 |
951.51 |
Ciudad de México |
1873.34 |
1984.98 |
2255.23 |
2665.86 |
2688.89 |
2197.21 |
2484.33 |
1274.45 |
Durango |
1632.71 |
1786.00 |
1915.42 |
1737.20 |
1637.28 |
1392.41 |
1564.19 |
713.63 |
Guanajuato |
1615.04 |
1771.83 |
1945.29 |
2186.44 |
2229.74 |
1972.81 |
2143.51 |
1107.19 |
Guerrero |
1028.44 |
1016.34 |
907.49 |
763.00 |
750.39 |
652.82 |
671.25 |
366.87 |
Hidalgo |
948.58 |
1148.58 |
1476.77 |
1699.32 |
1630.76 |
1336.83 |
1488.58 |
838.10 |
Jalisco |
1197.13 |
1698.37 |
2044.37 |
1975.44 |
1881.55 |
1505.41 |
1514.43 |
751.39 |
México |
1966.28 |
1951.18 |
2050.24 |
1999.38 |
2056.19 |
1958.24 |
2212.60 |
1147.30 |
Michoacán de Ocampo |
665.25 |
694.97 |
886.01 |
949.87 |
975.65 |
950.97 |
964.99 |
467.28 |
Morelos |
2550.89 |
2325.04 |
2241.16 |
2246.21 |
2135.45 |
1980.91 |
2048.46 |
1063.62 |
Nayarit |
556.34 |
301.99 |
261.00 |
362.91 |
365.33 |
323.23 |
388.32 |
268.47 |
Nuevo León |
1389.90 |
1600.73 |
1562.24 |
1487.21 |
1371.21 |
1407.25 |
1658.86 |
887.77 |
Oaxaca |
152.44 |
781.10 |
784.27 |
1024.87 |
1062.62 |
942.68 |
998.24 |
529.45 |
Puebla |
1026.36 |
804.62 |
838.87 |
944.18 |
1170.14 |
962.79 |
1127.44 |
586.34 |
Querétaro |
1585.70 |
2029.59 |
2475.64 |
2630.15 |
2702.63 |
2282.21 |
2325.64 |
1193.13 |
Quintana Roo |
2131.06 |
1211.44 |
1651.84 |
2069.19 |
2724.54 |
2364.76 |
2711.10 |
1387.67 |
San Luis Potosí |
776.55 |
1028.71 |
1254.74 |
1357.87 |
1837.27 |
1598.25 |
1769.76 |
935.88 |
Sinaloa |
855.90 |
726.08 |
745.13 |
756.49 |
748.74 |
757.44 |
860.76 |
467.43 |
Sonora |
993.46 |
1348.87 |
876.79 |
606.54 |
771.56 |
1011.14 |
1198.96 |
536.31 |
Tabasco |
2367.92 |
2418.60 |
2428.49 |
2316.09 |
2222.98 |
1749.96 |
1873.90 |
860.69 |
Tamaulipas |
1274.12 |
1375.86 |
1325.08 |
1226.80 |
1171.34 |
872.29 |
995.65 |
493.36 |
Tlaxcala |
642.14 |
515.44 |
523.07 |
472.50 |
323.35 |
300.07 |
324.39 |
166.79 |
Veracruz de Ignacio de la Llave |
552.57 |
508.77 |
792.40 |
720.38 |
1058.17 |
928.11 |
1028.22 |
505.70 |
Yucatán |
1630.78 |
1590.44 |
1117.65 |
594.55 |
735.00 |
372.58 |
375.01 |
90.80 |
Zacatecas |
1010.11 |
1059.95 |
1158.06 |
1282.89 |
1447.61 |
1364.72 |
1496.50 |
754.08 |
Posición de Querétaro por año (según tasa por cada 100k habitantes)
posicionAnual<-c()
for (i in 1:length(losAnos)) {
a<-tasaPorEstadoAnual[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaPorEstadoAnual[tasaPorEstadoAnual[i+1]>a,i+1])}
posicionAnual<-c(posicionAnual,b)
}
posicionesAnual<-data.frame(losAnos, posicionAnual)
names(posicionesAnual)<-c("Año","Posición del estado de Querétaro a nivel nacional")
kable(posicionesAnual, caption="Posición de Querétaro en la incidencia delictiva anual")
Posición de Querétaro en la incidencia delictiva anual
2015 |
13 |
2016 |
5 |
2017 |
4 |
2018 |
6 |
2019 |
6 |
2020 |
5 |
2021 |
6 |
2022 |
7 |
Delitos por estado (Serie Mensual)
delitoMensual<-subset(delitos2, delitos2$Ano==losAnos[length(losAnos)])
losmeses<-unique(delitoMensual$meses)
delitoPorEstado2020=as.data.frame(order(unique(delitoMensual$Clave_Ent)))
for (i in 1:length(losmeses)) {
datos<-delitoMensual[delitoMensual$meses==losmeses[i],]
delitoAnual<-as.data.frame(aggregate(datos$value~datos$Clave_Ent,datos,sum))[2]
delitoPorEstado2020<-cbind(delitoPorEstado2020,delitoAnual)
}
names(delitoPorEstado2020)<-c("clave de la entidad",levels(losmeses))
tasaAnualDedelitoPorEstado2020<-delitoPorEstado2020
tasaAnualDedelitoPorEstado2020[,2:elActual]<-round(delitoPorEstado2020[,2:elActual]/ent$year2020*100000,2)
if(esteMes!="Enero"){tasaDeCambio<-delitoPorEstado2020[,c(anterior,esteMes)]}else{
dic=as.data.frame(aggregate(formula =delitos2$value~delitos2$Clave_Ent,data = delitos2,FUN = sum,subset = delitos2$meses=="Diciembre" & delitos2$Ano==losAnos[length(losAnos)-1]))
tasaDeCambio=cbind(dic[2],delitoPorEstado2020[,esteMes])
names(tasaDeCambio)=c("Diciembre","Enero")
}
tasaDeCambio$tasa<-NA
tasaDeCambio$tasa<-round((tasaDeCambio[2]-tasaDeCambio[1])/tasaDeCambio[1]*100,2)
#la tasa de cambio de QUerétaro
tq<-tasaDeCambio[22,3]
tq<-tq[1,1]
#Querétaro fue el iesimo estado que mas crecio
iesimo<-length(tasaDeCambio$tasa[tasaDeCambio$tasa>tq])+1
totN<-colSums(tasaDeCambio[,c(1,2)])
#El pais creció a una tasa de tmex en el periodo
tmex<-round((totN[2]-totN[1])/totN[1]*100,2)
tmex<-as.vector(tmex)[1]
# Pone nombre al estado
nomEnt<-c()
for (i in 1:32) {
nomEnt<-c(nomEnt,delitoMensual$Entidad[delitoMensual$Clave_Ent==i][1])
}
delitoPorEstado2020$`clave de la entidad`<-nomEnt
ent$Entidad<-nomEnt
tasaAnualDedelitoPorEstado2020[1]<-nomEnt
En esta sección mostramos cómo se ha comportado la incidencia delictiva mes a mes, estado por estado.
General
Entre Mayo y Junio, el delito en Querétaro creció en -4.53%, en tanto que a nivel nacional lo hizo en -3.4%. Querétaro es en este periodo el 20 estado con la tasa de crecimiento más alta.
Tasa de cambio
kable(tasaDeCambio)
3534 |
3471 |
-1.78 |
9621 |
9754 |
1.38 |
1847 |
1901 |
2.92 |
1858 |
2155 |
15.98 |
5702 |
6904 |
21.08 |
2395 |
2489 |
3.92 |
1486 |
1227 |
-17.43 |
6744 |
6449 |
-4.37 |
21098 |
19700 |
-6.63 |
2396 |
2725 |
13.73 |
12368 |
12134 |
-1.89 |
2398 |
2342 |
-2.34 |
4844 |
4658 |
-3.84 |
11531 |
11006 |
-4.55 |
36582 |
34604 |
-5.41 |
4193 |
3687 |
-12.07 |
4080 |
3706 |
-9.17 |
793 |
658 |
-17.02 |
9787 |
9642 |
-1.48 |
4027 |
3579 |
-11.12 |
7217 |
6881 |
-4.66 |
5165 |
4931 |
-4.53 |
4651 |
4348 |
-6.51 |
5204 |
5099 |
-2.02 |
2805 |
2819 |
0.50 |
3038 |
2987 |
-1.68 |
4281 |
3855 |
-9.95 |
3403 |
3376 |
-0.79 |
384 |
378 |
-1.56 |
8030 |
7357 |
-8.38 |
387 |
383 |
-1.03 |
2360 |
2401 |
1.74 |
Serie Mensual 2020 (Absolutos)
kable(delitoPorEstado2020)
Aguascalientes |
2882 |
2995 |
3456 |
3308 |
3534 |
3471 |
0 |
0 |
0 |
0 |
0 |
0 |
Baja California |
7578 |
7443 |
9072 |
8780 |
9621 |
9754 |
0 |
0 |
0 |
0 |
0 |
0 |
Baja California Sur |
1401 |
1451 |
1802 |
1761 |
1847 |
1901 |
0 |
0 |
0 |
0 |
0 |
0 |
Campeche |
1952 |
1873 |
2328 |
2007 |
1858 |
2155 |
0 |
0 |
0 |
0 |
0 |
0 |
Coahuila de Zaragoza |
4912 |
4699 |
6539 |
5300 |
5702 |
6904 |
0 |
0 |
0 |
0 |
0 |
0 |
Colima |
2518 |
2087 |
2426 |
2387 |
2395 |
2489 |
0 |
0 |
0 |
0 |
0 |
0 |
Chiapas |
1331 |
1304 |
1697 |
1573 |
1486 |
1227 |
0 |
0 |
0 |
0 |
0 |
0 |
Chihuahua |
5368 |
5849 |
6299 |
6118 |
6744 |
6449 |
0 |
0 |
0 |
0 |
0 |
0 |
Ciudad de México |
16438 |
17446 |
20656 |
19194 |
21098 |
19700 |
0 |
0 |
0 |
0 |
0 |
0 |
Durango |
1965 |
1892 |
2248 |
2332 |
2396 |
2725 |
0 |
0 |
0 |
0 |
0 |
0 |
Guanajuato |
11148 |
10675 |
12381 |
11392 |
12368 |
12134 |
0 |
0 |
0 |
0 |
0 |
0 |
Guerrero |
2086 |
2021 |
2354 |
2299 |
2398 |
2342 |
0 |
0 |
0 |
0 |
0 |
0 |
Hidalgo |
3754 |
3875 |
4592 |
4724 |
4844 |
4658 |
0 |
0 |
0 |
0 |
0 |
0 |
Jalisco |
9902 |
9853 |
11274 |
10822 |
11531 |
11006 |
0 |
0 |
0 |
0 |
0 |
0 |
México |
30984 |
31173 |
36313 |
34247 |
36582 |
34604 |
0 |
0 |
0 |
0 |
0 |
0 |
Michoacán de Ocampo |
3652 |
3592 |
4047 |
3675 |
4193 |
3687 |
0 |
0 |
0 |
0 |
0 |
0 |
Morelos |
3410 |
3360 |
4028 |
3597 |
4080 |
3706 |
0 |
0 |
0 |
0 |
0 |
0 |
Nayarit |
392 |
573 |
558 |
579 |
793 |
658 |
0 |
0 |
0 |
0 |
0 |
0 |
Nuevo León |
7542 |
6834 |
8889 |
8445 |
9787 |
9642 |
0 |
0 |
0 |
0 |
0 |
0 |
Oaxaca |
3456 |
3293 |
3983 |
3829 |
4027 |
3579 |
0 |
0 |
0 |
0 |
0 |
0 |
Puebla |
5897 |
5964 |
7134 |
6329 |
7217 |
6881 |
0 |
0 |
0 |
0 |
0 |
0 |
Querétaro |
4302 |
4090 |
4931 |
4724 |
5165 |
4931 |
0 |
0 |
0 |
0 |
0 |
0 |
Quintana Roo |
3678 |
3682 |
4414 |
4190 |
4651 |
4348 |
0 |
0 |
0 |
0 |
0 |
0 |
San Luis Potosí |
3628 |
3865 |
4684 |
4704 |
5204 |
5099 |
0 |
0 |
0 |
0 |
0 |
0 |
Sinaloa |
2102 |
2113 |
2558 |
2588 |
2805 |
2819 |
0 |
0 |
0 |
0 |
0 |
0 |
Sonora |
2419 |
2555 |
3166 |
2712 |
3038 |
2987 |
0 |
0 |
0 |
0 |
0 |
0 |
Tabasco |
3323 |
3263 |
4005 |
3879 |
4281 |
3855 |
0 |
0 |
0 |
0 |
0 |
0 |
Tamaulipas |
2420 |
2521 |
3280 |
3294 |
3403 |
3376 |
0 |
0 |
0 |
0 |
0 |
0 |
Tlaxcala |
397 |
397 |
438 |
359 |
384 |
378 |
0 |
0 |
0 |
0 |
0 |
0 |
Veracruz de Ignacio de la Llave |
6040 |
6428 |
8336 |
7473 |
8030 |
7357 |
0 |
0 |
0 |
0 |
0 |
0 |
Yucatán |
316 |
320 |
333 |
357 |
387 |
383 |
0 |
0 |
0 |
0 |
0 |
0 |
Zacatecas |
1833 |
1824 |
2225 |
2094 |
2360 |
2401 |
0 |
0 |
0 |
0 |
0 |
0 |
Serie Mensual 2020 (Tasa por 100 mil habitantes)
kable(tasaAnualDedelitoPorEstado2020)
Aguascalientes |
200.89 |
208.76 |
240.90 |
230.58 |
246.33 |
241.94 |
0 |
0 |
0 |
0 |
0 |
0 |
Baja California |
208.48 |
204.77 |
249.58 |
241.55 |
264.69 |
268.35 |
0 |
0 |
0 |
0 |
0 |
0 |
Baja California Sur |
174.10 |
180.31 |
223.93 |
218.84 |
229.52 |
236.23 |
0 |
0 |
0 |
0 |
0 |
0 |
Campeche |
195.08 |
187.18 |
232.66 |
200.58 |
185.69 |
215.37 |
0 |
0 |
0 |
0 |
0 |
0 |
Coahuila de Zaragoza |
152.61 |
145.99 |
203.16 |
164.66 |
177.15 |
214.50 |
0 |
0 |
0 |
0 |
0 |
0 |
Colima |
320.70 |
265.81 |
308.98 |
304.02 |
305.04 |
317.01 |
0 |
0 |
0 |
0 |
0 |
0 |
Chiapas |
23.23 |
22.76 |
29.61 |
27.45 |
25.93 |
21.41 |
0 |
0 |
0 |
0 |
0 |
0 |
Chihuahua |
141.21 |
153.86 |
165.70 |
160.94 |
177.40 |
169.64 |
0 |
0 |
0 |
0 |
0 |
0 |
Ciudad de México |
182.27 |
193.44 |
229.04 |
212.83 |
233.94 |
218.44 |
0 |
0 |
0 |
0 |
0 |
0 |
Durango |
105.14 |
101.23 |
120.28 |
124.77 |
128.20 |
145.80 |
0 |
0 |
0 |
0 |
0 |
0 |
Guanajuato |
178.99 |
171.40 |
198.79 |
182.91 |
198.58 |
194.82 |
0 |
0 |
0 |
0 |
0 |
0 |
Guerrero |
57.04 |
55.26 |
64.37 |
62.86 |
65.57 |
64.04 |
0 |
0 |
0 |
0 |
0 |
0 |
Hidalgo |
121.63 |
125.55 |
148.78 |
153.06 |
156.95 |
150.92 |
0 |
0 |
0 |
0 |
0 |
0 |
Jalisco |
117.75 |
117.16 |
134.06 |
128.68 |
137.12 |
130.87 |
0 |
0 |
0 |
0 |
0 |
0 |
México |
177.79 |
178.87 |
208.36 |
196.51 |
209.91 |
198.56 |
0 |
0 |
0 |
0 |
0 |
0 |
Michoacán de Ocampo |
75.68 |
74.44 |
83.87 |
76.16 |
86.89 |
76.41 |
0 |
0 |
0 |
0 |
0 |
0 |
Morelos |
166.83 |
164.38 |
197.06 |
175.97 |
199.60 |
181.31 |
0 |
0 |
0 |
0 |
0 |
0 |
Nayarit |
30.42 |
44.47 |
43.30 |
44.93 |
61.54 |
51.06 |
0 |
0 |
0 |
0 |
0 |
0 |
Nuevo León |
134.43 |
121.81 |
158.44 |
150.53 |
174.45 |
171.87 |
0 |
0 |
0 |
0 |
0 |
0 |
Oaxaca |
83.41 |
79.47 |
96.12 |
92.41 |
97.19 |
86.37 |
0 |
0 |
0 |
0 |
0 |
0 |
Puebla |
89.29 |
90.30 |
108.02 |
95.83 |
109.27 |
104.19 |
0 |
0 |
0 |
0 |
0 |
0 |
Querétaro |
188.71 |
179.41 |
216.31 |
207.23 |
226.57 |
216.31 |
0 |
0 |
0 |
0 |
0 |
0 |
Quintana Roo |
213.43 |
213.66 |
256.14 |
243.14 |
269.90 |
252.31 |
0 |
0 |
0 |
0 |
0 |
0 |
San Luis Potosí |
126.58 |
134.85 |
163.43 |
164.12 |
181.57 |
177.90 |
0 |
0 |
0 |
0 |
0 |
0 |
Sinaloa |
66.59 |
66.94 |
81.03 |
81.99 |
88.86 |
89.30 |
0 |
0 |
0 |
0 |
0 |
0 |
Sonora |
78.67 |
83.10 |
102.97 |
88.20 |
98.80 |
97.15 |
0 |
0 |
0 |
0 |
0 |
0 |
Tabasco |
129.18 |
126.85 |
155.70 |
150.80 |
166.43 |
149.87 |
0 |
0 |
0 |
0 |
0 |
0 |
Tamaulipas |
66.29 |
69.06 |
89.85 |
90.23 |
93.22 |
92.48 |
0 |
0 |
0 |
0 |
0 |
0 |
Tlaxcala |
28.77 |
28.77 |
31.74 |
26.01 |
27.83 |
27.39 |
0 |
0 |
0 |
0 |
0 |
0 |
Veracruz de Ignacio de la Llave |
70.73 |
75.27 |
97.61 |
87.51 |
94.03 |
86.15 |
0 |
0 |
0 |
0 |
0 |
0 |
Yucatán |
13.99 |
14.16 |
14.74 |
15.80 |
17.13 |
16.95 |
0 |
0 |
0 |
0 |
0 |
0 |
Zacatecas |
110.00 |
109.46 |
133.52 |
125.66 |
141.62 |
144.08 |
0 |
0 |
0 |
0 |
0 |
0 |
posición de queretaro por mes en el país
posicionMensual<-c()
for (i in 1:length(losmeses)) {
a<-tasaAnualDedelitoPorEstado2020[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaAnualDedelitoPorEstado2020[tasaAnualDedelitoPorEstado2020[i+1]>a,i+1])}
posicionMensual<-c(posicionMensual,b)
}
posiciones<-data.frame(losmeses, posicionMensual)
names(posiciones)<-c("Mes","Posición de Querétaro a nivel nacional en el periodo")
kable(posiciones)
Enero |
6 |
Febrero |
8 |
Marzo |
8 |
Abril |
7 |
Mayo |
7 |
Junio |
7 |
Julio |
0 |
Agosto |
0 |
Septiembre |
0 |
Octubre |
0 |
Noviembre |
0 |
Diciembre |
0 |
Lugar de Querétaro en el año por delito
losDelitos<-unique(delitos2$Subtipo.de.delito)
losDelitos2020<-subset(delitos2,delitos2$Ano==losAnos[length(losAnos)])
delitoEstado2020=as.data.frame(order(unique(losDelitos2020$Clave_Ent)))
for (i in 1:length(losDelitos)) {
a<-subset(losDelitos2020,losDelitos2020$Subtipo.de.delito==losDelitos[i])
b<-as.data.frame(aggregate(a$value~a$Clave_Ent,a,sum))[2]
delitoEstado2020<-cbind(delitoEstado2020,b)
}
names(delitoEstado2020)<-c("claveEntidad",losDelitos)
tasaDelitoEstado2020<-delitoEstado2020
tasaDelitoEstado2020[,2:56]<-round(delitoEstado2020[,2:56]/ent[,micol]*100000,2)
for (i in 1:length(nomEnt)) {
delitoEstado2020[i,1]<-nomEnt[i]
tasaDelitoEstado2020[i,1]<-nomEnt[i]
}
Incidencia en subtipos de Delito por estado en 2020
kable(delitoEstado2020)
Aguascalientes |
28 |
74 |
1878 |
541 |
7 |
4 |
23 |
1 |
0 |
0 |
195 |
0 |
0 |
69 |
131 |
58 |
0 |
317 |
1062 |
714 |
440 |
0 |
806 |
3 |
69 |
5 |
12 |
0 |
1015 |
103 |
2 |
938 |
1252 |
387 |
44 |
2290 |
200 |
155 |
1232 |
7 |
121 |
14 |
34 |
1 |
0 |
1204 |
1923 |
354 |
1 |
31 |
484 |
35 |
244 |
41 |
1097 |
Baja California |
1173 |
273 |
2578 |
846 |
14 |
19 |
1174 |
9 |
0 |
0 |
670 |
809 |
0 |
210 |
315 |
184 |
0 |
167 |
1603 |
6224 |
46 |
8 |
2412 |
0 |
7 |
4 |
3 |
0 |
2498 |
18 |
0 |
3601 |
1212 |
217 |
73 |
3734 |
667 |
606 |
6389 |
0 |
411 |
254 |
336 |
40 |
30 |
4861 |
2879 |
1028 |
1 |
86 |
191 |
9 |
484 |
5 |
3870 |
Baja California Sur |
21 |
31 |
736 |
287 |
3 |
2 |
95 |
1 |
0 |
0 |
57 |
206 |
59 |
6 |
143 |
26 |
0 |
79 |
573 |
289 |
6 |
3 |
52 |
14 |
1 |
2 |
2 |
0 |
302 |
11 |
4 |
1469 |
664 |
139 |
71 |
764 |
182 |
104 |
1278 |
1 |
314 |
95 |
23 |
2 |
1 |
272 |
872 |
113 |
0 |
82 |
47 |
0 |
151 |
4 |
504 |
Campeche |
34 |
63 |
1562 |
564 |
7 |
2 |
110 |
1 |
0 |
0 |
113 |
213 |
34 |
12 |
59 |
120 |
0 |
31 |
613 |
226 |
46 |
3 |
142 |
16 |
16 |
10 |
4 |
0 |
387 |
82 |
2 |
1220 |
467 |
233 |
39 |
1406 |
163 |
201 |
972 |
0 |
125 |
14 |
27 |
0 |
1 |
103 |
1667 |
214 |
0 |
15 |
144 |
10 |
72 |
1 |
607 |
Coahuila de Zaragoza |
65 |
115 |
2105 |
394 |
14 |
1 |
31 |
1 |
0 |
0 |
25 |
552 |
263 |
16 |
115 |
151 |
1 |
44 |
945 |
238 |
62 |
0 |
141 |
21 |
8 |
4 |
8 |
0 |
443 |
54 |
43 |
1906 |
830 |
393 |
20 |
4028 |
255 |
994 |
6865 |
0 |
118 |
95 |
17 |
7 |
0 |
5874 |
4161 |
449 |
0 |
5 |
52 |
3 |
345 |
33 |
1746 |
Colima |
381 |
76 |
580 |
369 |
0 |
2 |
0 |
3 |
0 |
0 |
204 |
190 |
0 |
23 |
102 |
0 |
0 |
28 |
793 |
551 |
0 |
1 |
51 |
0 |
0 |
0 |
0 |
0 |
390 |
18 |
0 |
1774 |
626 |
265 |
70 |
1542 |
208 |
113 |
2136 |
0 |
336 |
0 |
11 |
3 |
41 |
1003 |
1581 |
97 |
0 |
41 |
99 |
4 |
114 |
0 |
476 |
Chiapas |
198 |
374 |
341 |
349 |
20 |
3 |
60 |
7 |
0 |
0 |
73 |
116 |
37 |
8 |
195 |
16 |
1 |
357 |
76 |
665 |
8 |
0 |
58 |
28 |
0 |
1 |
4 |
0 |
106 |
9 |
2 |
333 |
102 |
56 |
14 |
538 |
75 |
47 |
1042 |
0 |
130 |
5 |
13 |
3 |
41 |
1605 |
496 |
46 |
2 |
6 |
26 |
29 |
49 |
9 |
839 |
Chihuahua |
759 |
192 |
2134 |
667 |
22 |
3 |
164 |
11 |
0 |
0 |
416 |
1017 |
87 |
115 |
624 |
152 |
0 |
244 |
1323 |
2053 |
314 |
8 |
230 |
69 |
5 |
2 |
13 |
1 |
954 |
84 |
109 |
2200 |
2998 |
586 |
3 |
4077 |
474 |
1003 |
6987 |
24 |
1015 |
18 |
56 |
24 |
0 |
1741 |
1750 |
339 |
1 |
113 |
313 |
15 |
484 |
11 |
823 |
Ciudad de México |
324 |
327 |
2670 |
2593 |
31 |
95 |
521 |
14 |
0 |
4 |
883 |
2330 |
804 |
0 |
423 |
889 |
0 |
980 |
1544 |
2990 |
3950 |
43 |
5342 |
1499 |
291 |
1946 |
812 |
9 |
5452 |
0 |
2 |
13122 |
10296 |
2699 |
185 |
5558 |
2086 |
2222 |
18298 |
0 |
473 |
11 |
170 |
88 |
783 |
2411 |
9066 |
423 |
6 |
240 |
1223 |
483 |
2598 |
39 |
5284 |
Durango |
57 |
115 |
1247 |
649 |
8 |
1 |
6 |
0 |
0 |
0 |
73 |
307 |
60 |
9 |
159 |
3 |
0 |
182 |
870 |
402 |
47 |
16 |
142 |
7 |
5 |
5 |
1 |
0 |
622 |
34 |
0 |
1033 |
810 |
373 |
40 |
1312 |
213 |
21 |
2653 |
10 |
87 |
310 |
0 |
0 |
5 |
428 |
629 |
70 |
1 |
15 |
61 |
2 |
18 |
10 |
430 |
Guanajuato |
1259 |
445 |
6846 |
13 |
12 |
14 |
448 |
5 |
0 |
0 |
0 |
759 |
177 |
53 |
443 |
50 |
1 |
20 |
2108 |
1959 |
0 |
7 |
104 |
0 |
0 |
0 |
0 |
1 |
2280 |
65 |
0 |
8944 |
2013 |
831 |
248 |
6112 |
779 |
93 |
6802 |
0 |
1079 |
31 |
180 |
1 |
0 |
11014 |
5610 |
216 |
3 |
107 |
344 |
4 |
60 |
1 |
8557 |
Guerrero |
558 |
223 |
1339 |
353 |
4 |
1 |
18 |
9 |
0 |
0 |
227 |
222 |
74 |
16 |
132 |
99 |
0 |
0 |
170 |
1022 |
9 |
1 |
150 |
8 |
1 |
7 |
0 |
5 |
496 |
6 |
1 |
1182 |
469 |
169 |
117 |
1077 |
309 |
0 |
1772 |
153 |
282 |
79 |
9 |
2 |
0 |
386 |
1358 |
104 |
0 |
39 |
154 |
6 |
114 |
1 |
567 |
Hidalgo |
154 |
137 |
1877 |
1419 |
6 |
11 |
92 |
12 |
0 |
1 |
949 |
335 |
1 |
46 |
263 |
257 |
0 |
169 |
643 |
1731 |
44 |
15 |
346 |
36 |
14 |
3 |
10 |
0 |
579 |
25 |
3 |
2693 |
693 |
251 |
130 |
1325 |
509 |
91 |
3614 |
0 |
467 |
1 |
20 |
10 |
8 |
271 |
1616 |
147 |
0 |
68 |
97 |
0 |
312 |
113 |
4833 |
Jalisco |
776 |
509 |
4168 |
1366 |
17 |
5 |
0 |
13 |
1 |
0 |
389 |
1353 |
182 |
41 |
238 |
3 |
0 |
940 |
1420 |
5921 |
891 |
170 |
3990 |
308 |
148 |
235 |
240 |
3 |
2774 |
60 |
223 |
6790 |
4338 |
704 |
297 |
3977 |
754 |
0 |
6549 |
0 |
0 |
411 |
50 |
1 |
2 |
636 |
5296 |
130 |
3 |
76 |
697 |
33 |
232 |
0 |
7028 |
México |
1106 |
767 |
25596 |
6006 |
76 |
66 |
607 |
50 |
1 |
0 |
3106 |
2817 |
1829 |
88 |
980 |
884 |
0 |
59 |
4183 |
16959 |
1882 |
2311 |
12967 |
5 |
503 |
3582 |
5378 |
11 |
10311 |
86 |
1 |
11330 |
6675 |
1888 |
2377 |
8109 |
2336 |
109 |
13643 |
1291 |
1570 |
2 |
50 |
123 |
2026 |
1807 |
0 |
855 |
8 |
119 |
1562 |
153 |
1800 |
10 |
43843 |
Michoacán de Ocampo |
1135 |
545 |
3366 |
655 |
14 |
16 |
147 |
22 |
0 |
0 |
175 |
337 |
90 |
18 |
224 |
64 |
0 |
164 |
495 |
2404 |
14 |
398 |
149 |
17 |
55 |
67 |
8 |
7 |
306 |
20 |
30 |
1530 |
1254 |
335 |
32 |
1871 |
445 |
144 |
690 |
0 |
80 |
0 |
15 |
3 |
1 |
1139 |
2345 |
199 |
0 |
12 |
404 |
59 |
149 |
6 |
1191 |
Morelos |
505 |
146 |
461 |
1469 |
21 |
5 |
278 |
13 |
0 |
0 |
107 |
324 |
15 |
38 |
318 |
2 |
2 |
35 |
715 |
1916 |
501 |
67 |
367 |
21 |
10 |
56 |
44 |
8 |
1199 |
23 |
1 |
2250 |
947 |
322 |
65 |
1857 |
648 |
213 |
2690 |
0 |
166 |
184 |
20 |
6 |
8 |
394 |
2539 |
180 |
1 |
44 |
98 |
3 |
14 |
0 |
865 |
Nayarit |
84 |
89 |
172 |
65 |
1 |
1 |
9 |
1 |
0 |
0 |
21 |
0 |
10 |
0 |
113 |
13 |
0 |
88 |
152 |
225 |
10 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
110 |
0 |
1 |
125 |
138 |
18 |
9 |
148 |
42 |
4 |
749 |
0 |
385 |
10 |
12 |
0 |
5 |
134 |
79 |
22 |
0 |
5 |
12 |
5 |
24 |
0 |
460 |
Nuevo León |
622 |
299 |
2630 |
911 |
58 |
74 |
160 |
11 |
0 |
48 |
1209 |
958 |
457 |
30 |
497 |
315 |
1 |
448 |
1830 |
1905 |
51 |
91 |
504 |
395 |
49 |
21 |
21 |
4 |
930 |
81 |
48 |
2084 |
2814 |
500 |
373 |
3675 |
661 |
53 |
11133 |
0 |
314 |
3329 |
125 |
31 |
3 |
2507 |
3526 |
295 |
2 |
122 |
849 |
9 |
1015 |
9 |
3052 |
Oaxaca |
365 |
504 |
2002 |
516 |
23 |
6 |
126 |
18 |
0 |
0 |
154 |
230 |
153 |
34 |
238 |
167 |
0 |
13 |
635 |
1319 |
82 |
54 |
1131 |
118 |
9 |
95 |
7 |
5 |
749 |
37 |
6 |
1446 |
996 |
219 |
66 |
1389 |
519 |
388 |
3717 |
2 |
71 |
139 |
22 |
5 |
319 |
151 |
2320 |
166 |
3 |
249 |
125 |
0 |
153 |
74 |
832 |
Puebla |
460 |
223 |
2976 |
593 |
12 |
1 |
151 |
11 |
0 |
0 |
113 |
467 |
130 |
37 |
237 |
198 |
0 |
587 |
1216 |
3778 |
515 |
794 |
2033 |
0 |
58 |
232 |
695 |
5 |
2253 |
56 |
459 |
2799 |
2526 |
734 |
54 |
2343 |
881 |
135 |
4350 |
0 |
158 |
335 |
20 |
20 |
258 |
1172 |
2992 |
211 |
4 |
68 |
247 |
22 |
688 |
22 |
1093 |
Querétaro |
74 |
161 |
2199 |
487 |
4 |
21 |
531 |
7 |
0 |
0 |
101 |
387 |
410 |
27 |
194 |
154 |
0 |
19 |
1209 |
2018 |
276 |
0 |
741 |
38 |
34 |
66 |
227 |
0 |
1293 |
57 |
2 |
5353 |
1864 |
316 |
126 |
785 |
437 |
13 |
2370 |
286 |
374 |
131 |
0 |
4 |
170 |
646 |
2060 |
163 |
0 |
94 |
107 |
1 |
0 |
0 |
2106 |
Quintana Roo |
250 |
492 |
1400 |
824 |
8 |
2 |
168 |
1 |
0 |
0 |
508 |
611 |
133 |
16 |
410 |
0 |
0 |
257 |
827 |
1347 |
48 |
7 |
768 |
270 |
22 |
66 |
26 |
0 |
931 |
14 |
154 |
2854 |
138 |
1534 |
38 |
2432 |
359 |
162 |
3026 |
0 |
245 |
355 |
80 |
14 |
3 |
912 |
1525 |
136 |
0 |
207 |
156 |
41 |
309 |
23 |
854 |
San Luis Potosí |
313 |
109 |
1990 |
280 |
6 |
4 |
112 |
7 |
3 |
0 |
375 |
358 |
161 |
22 |
322 |
0 |
0 |
54 |
527 |
1858 |
462 |
168 |
465 |
41 |
13 |
14 |
1 |
1 |
832 |
138 |
59 |
3534 |
1287 |
374 |
62 |
2836 |
267 |
754 |
4442 |
0 |
272 |
18 |
18 |
6 |
0 |
782 |
1457 |
240 |
3 |
0 |
89 |
77 |
310 |
2 |
1659 |
Sinaloa |
226 |
335 |
1627 |
435 |
8 |
5 |
294 |
2 |
1 |
0 |
590 |
265 |
78 |
4 |
142 |
43 |
1 |
44 |
228 |
1746 |
11 |
0 |
17 |
1 |
1 |
4 |
16 |
15 |
882 |
5 |
0 |
1091 |
398 |
157 |
32 |
1249 |
295 |
19 |
3194 |
0 |
85 |
105 |
29 |
4 |
19 |
78 |
753 |
38 |
0 |
41 |
74 |
0 |
89 |
0 |
209 |
Sonora |
702 |
163 |
1048 |
450 |
12 |
4 |
188 |
5 |
0 |
0 |
288 |
300 |
45 |
7 |
143 |
36 |
1 |
38 |
402 |
1209 |
61 |
14 |
169 |
67 |
0 |
2 |
21 |
1 |
327 |
48 |
31 |
1967 |
146 |
50 |
34 |
1221 |
109 |
120 |
3218 |
0 |
752 |
33 |
37 |
0 |
79 |
1119 |
899 |
201 |
0 |
27 |
16 |
5 |
36 |
0 |
1026 |
Tabasco |
144 |
221 |
1994 |
612 |
8 |
3 |
303 |
4 |
0 |
0 |
219 |
129 |
0 |
151 |
156 |
1 |
0 |
349 |
626 |
1151 |
18 |
8 |
680 |
0 |
2 |
8 |
2 |
0 |
407 |
173 |
0 |
2054 |
634 |
388 |
74 |
1085 |
250 |
74 |
3737 |
0 |
516 |
9 |
23 |
1 |
0 |
20 |
2235 |
166 |
0 |
16 |
106 |
0 |
86 |
1 |
3762 |
Tamaulipas |
191 |
409 |
1119 |
589 |
10 |
26 |
138 |
8 |
1 |
0 |
237 |
364 |
53 |
16 |
259 |
1 |
0 |
30 |
664 |
968 |
11 |
1 |
61 |
0 |
0 |
0 |
0 |
1 |
793 |
25 |
0 |
1546 |
806 |
289 |
68 |
1869 |
286 |
16 |
3865 |
0 |
781 |
408 |
30 |
1 |
0 |
95 |
881 |
115 |
0 |
60 |
48 |
6 |
223 |
77 |
849 |
Tlaxcala |
68 |
19 |
103 |
43 |
1 |
0 |
4 |
2 |
0 |
0 |
0 |
15 |
3 |
2 |
22 |
1 |
0 |
9 |
188 |
854 |
6 |
32 |
57 |
10 |
4 |
4 |
8 |
1 |
138 |
12 |
25 |
110 |
29 |
10 |
3 |
53 |
20 |
9 |
177 |
0 |
19 |
2 |
0 |
1 |
0 |
100 |
7 |
45 |
0 |
0 |
7 |
0 |
0 |
0 |
130 |
Veracruz de Ignacio de la Llave |
432 |
533 |
3440 |
1117 |
41 |
20 |
110 |
20 |
0 |
0 |
280 |
475 |
0 |
248 |
231 |
6 |
0 |
815 |
1436 |
2759 |
66 |
39 |
1274 |
103 |
37 |
20 |
34 |
14 |
2356 |
243 |
40 |
1754 |
1857 |
701 |
414 |
3777 |
1261 |
434 |
6077 |
822 |
678 |
876 |
33 |
2 |
2 |
719 |
3560 |
368 |
0 |
121 |
215 |
111 |
207 |
13 |
3473 |
Yucatán |
20 |
92 |
116 |
11 |
3 |
0 |
41 |
0 |
0 |
0 |
3 |
46 |
6 |
0 |
19 |
0 |
0 |
0 |
74 |
60 |
0 |
0 |
27 |
0 |
0 |
0 |
0 |
0 |
28 |
0 |
0 |
1 |
49 |
50 |
4 |
283 |
11 |
80 |
69 |
0 |
36 |
4 |
1 |
1 |
0 |
180 |
457 |
15 |
0 |
0 |
1 |
3 |
10 |
3 |
292 |
Zacatecas |
468 |
191 |
855 |
348 |
8 |
0 |
183 |
6 |
0 |
0 |
321 |
149 |
63 |
5 |
106 |
58 |
0 |
49 |
201 |
812 |
16 |
2 |
8 |
6 |
1 |
1 |
8 |
0 |
115 |
46 |
5 |
1766 |
688 |
192 |
253 |
1208 |
172 |
44 |
1722 |
0 |
322 |
53 |
11 |
7 |
0 |
173 |
739 |
77 |
3 |
92 |
64 |
1 |
219 |
5 |
895 |
Tasa por cada 100 mil habitantes
kable(tasaDelitoEstado2020)
Aguascalientes |
1.90 |
5.03 |
127.59 |
36.76 |
0.48 |
0.27 |
1.56 |
0.07 |
0.00 |
0.00 |
13.25 |
0.00 |
0.00 |
4.69 |
8.90 |
3.94 |
0.00 |
21.54 |
72.15 |
48.51 |
29.89 |
0.00 |
54.76 |
0.20 |
4.69 |
0.34 |
0.82 |
0.00 |
68.96 |
7.00 |
0.14 |
63.73 |
85.06 |
26.29 |
2.99 |
155.59 |
13.59 |
10.53 |
83.70 |
0.48 |
8.22 |
0.95 |
2.31 |
0.07 |
0.00 |
81.80 |
130.65 |
24.05 |
0.07 |
2.11 |
32.88 |
2.38 |
16.58 |
2.79 |
74.53 |
Baja California |
31.33 |
7.29 |
68.85 |
22.59 |
0.37 |
0.51 |
31.35 |
0.24 |
0.00 |
0.00 |
17.89 |
21.61 |
0.00 |
5.61 |
8.41 |
4.91 |
0.00 |
4.46 |
42.81 |
166.22 |
1.23 |
0.21 |
64.42 |
0.00 |
0.19 |
0.11 |
0.08 |
0.00 |
66.71 |
0.48 |
0.00 |
96.17 |
32.37 |
5.80 |
1.95 |
99.72 |
17.81 |
16.18 |
170.63 |
0.00 |
10.98 |
6.78 |
8.97 |
1.07 |
0.80 |
129.82 |
76.89 |
27.45 |
0.03 |
2.30 |
5.10 |
0.24 |
12.93 |
0.13 |
103.35 |
Baja California Sur |
2.51 |
3.70 |
87.92 |
34.28 |
0.36 |
0.24 |
11.35 |
0.12 |
0.00 |
0.00 |
6.81 |
24.61 |
7.05 |
0.72 |
17.08 |
3.11 |
0.00 |
9.44 |
68.45 |
34.52 |
0.72 |
0.36 |
6.21 |
1.67 |
0.12 |
0.24 |
0.24 |
0.00 |
36.07 |
1.31 |
0.48 |
175.47 |
79.32 |
16.60 |
8.48 |
91.26 |
21.74 |
12.42 |
152.66 |
0.12 |
37.51 |
11.35 |
2.75 |
0.24 |
0.12 |
32.49 |
104.16 |
13.50 |
0.00 |
9.79 |
5.61 |
0.00 |
18.04 |
0.48 |
60.20 |
Campeche |
3.29 |
6.10 |
151.18 |
54.59 |
0.68 |
0.19 |
10.65 |
0.10 |
0.00 |
0.00 |
10.94 |
20.62 |
3.29 |
1.16 |
5.71 |
11.61 |
0.00 |
3.00 |
59.33 |
21.87 |
4.45 |
0.29 |
13.74 |
1.55 |
1.55 |
0.97 |
0.39 |
0.00 |
37.46 |
7.94 |
0.19 |
118.08 |
45.20 |
22.55 |
3.77 |
136.08 |
15.78 |
19.45 |
94.07 |
0.00 |
12.10 |
1.35 |
2.61 |
0.00 |
0.10 |
9.97 |
161.34 |
20.71 |
0.00 |
1.45 |
13.94 |
0.97 |
6.97 |
0.10 |
58.75 |
Coahuila de Zaragoza |
1.97 |
3.48 |
63.73 |
11.93 |
0.42 |
0.03 |
0.94 |
0.03 |
0.00 |
0.00 |
0.76 |
16.71 |
7.96 |
0.48 |
3.48 |
4.57 |
0.03 |
1.33 |
28.61 |
7.21 |
1.88 |
0.00 |
4.27 |
0.64 |
0.24 |
0.12 |
0.24 |
0.00 |
13.41 |
1.63 |
1.30 |
57.70 |
25.13 |
11.90 |
0.61 |
121.94 |
7.72 |
30.09 |
207.83 |
0.00 |
3.57 |
2.88 |
0.51 |
0.21 |
0.00 |
177.83 |
125.97 |
13.59 |
0.00 |
0.15 |
1.57 |
0.09 |
10.44 |
1.00 |
52.86 |
Colima |
47.09 |
9.39 |
71.68 |
45.61 |
0.00 |
0.25 |
0.00 |
0.37 |
0.00 |
0.00 |
25.21 |
23.48 |
0.00 |
2.84 |
12.61 |
0.00 |
0.00 |
3.46 |
98.01 |
68.10 |
0.00 |
0.12 |
6.30 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
48.20 |
2.22 |
0.00 |
219.25 |
77.37 |
32.75 |
8.65 |
190.58 |
25.71 |
13.97 |
263.99 |
0.00 |
41.53 |
0.00 |
1.36 |
0.37 |
5.07 |
123.96 |
195.40 |
11.99 |
0.00 |
5.07 |
12.24 |
0.49 |
14.09 |
0.00 |
58.83 |
Chiapas |
3.36 |
6.35 |
5.79 |
5.92 |
0.34 |
0.05 |
1.02 |
0.12 |
0.00 |
0.00 |
1.24 |
1.97 |
0.63 |
0.14 |
3.31 |
0.27 |
0.02 |
6.06 |
1.29 |
11.28 |
0.14 |
0.00 |
0.98 |
0.48 |
0.00 |
0.02 |
0.07 |
0.00 |
1.80 |
0.15 |
0.03 |
5.65 |
1.73 |
0.95 |
0.24 |
9.13 |
1.27 |
0.80 |
17.68 |
0.00 |
2.21 |
0.08 |
0.22 |
0.05 |
0.70 |
27.23 |
8.42 |
0.78 |
0.03 |
0.10 |
0.44 |
0.49 |
0.83 |
0.15 |
14.24 |
Chihuahua |
19.61 |
4.96 |
55.14 |
17.23 |
0.57 |
0.08 |
4.24 |
0.28 |
0.00 |
0.00 |
10.75 |
26.28 |
2.25 |
2.97 |
16.12 |
3.93 |
0.00 |
6.30 |
34.18 |
53.04 |
8.11 |
0.21 |
5.94 |
1.78 |
0.13 |
0.05 |
0.34 |
0.03 |
24.65 |
2.17 |
2.82 |
56.84 |
77.46 |
15.14 |
0.08 |
105.34 |
12.25 |
25.91 |
180.52 |
0.62 |
26.22 |
0.47 |
1.45 |
0.62 |
0.00 |
44.98 |
45.22 |
8.76 |
0.03 |
2.92 |
8.09 |
0.39 |
12.51 |
0.28 |
21.26 |
Ciudad de México |
3.61 |
3.64 |
29.71 |
28.85 |
0.34 |
1.06 |
5.80 |
0.16 |
0.00 |
0.04 |
9.83 |
25.93 |
8.95 |
0.00 |
4.71 |
9.89 |
0.00 |
10.90 |
17.18 |
33.27 |
43.95 |
0.48 |
59.44 |
16.68 |
3.24 |
21.65 |
9.04 |
0.10 |
60.67 |
0.00 |
0.02 |
146.01 |
114.57 |
30.03 |
2.06 |
61.85 |
23.21 |
24.73 |
203.61 |
0.00 |
5.26 |
0.12 |
1.89 |
0.98 |
8.71 |
26.83 |
100.88 |
4.71 |
0.07 |
2.67 |
13.61 |
5.37 |
28.91 |
0.43 |
58.80 |
Durango |
3.00 |
6.05 |
65.64 |
34.16 |
0.42 |
0.05 |
0.32 |
0.00 |
0.00 |
0.00 |
3.84 |
16.16 |
3.16 |
0.47 |
8.37 |
0.16 |
0.00 |
9.58 |
45.79 |
21.16 |
2.47 |
0.84 |
7.47 |
0.37 |
0.26 |
0.26 |
0.05 |
0.00 |
32.74 |
1.79 |
0.00 |
54.37 |
42.63 |
19.63 |
2.11 |
69.06 |
11.21 |
1.11 |
139.64 |
0.53 |
4.58 |
16.32 |
0.00 |
0.00 |
0.26 |
22.53 |
33.11 |
3.68 |
0.05 |
0.79 |
3.21 |
0.11 |
0.95 |
0.53 |
22.63 |
Guanajuato |
19.89 |
7.03 |
108.13 |
0.21 |
0.19 |
0.22 |
7.08 |
0.08 |
0.00 |
0.00 |
0.00 |
11.99 |
2.80 |
0.84 |
7.00 |
0.79 |
0.02 |
0.32 |
33.30 |
30.94 |
0.00 |
0.11 |
1.64 |
0.00 |
0.00 |
0.00 |
0.00 |
0.02 |
36.01 |
1.03 |
0.00 |
141.27 |
31.80 |
13.13 |
3.92 |
96.54 |
12.30 |
1.47 |
107.44 |
0.00 |
17.04 |
0.49 |
2.84 |
0.02 |
0.00 |
173.97 |
88.61 |
3.41 |
0.05 |
1.69 |
5.43 |
0.06 |
0.95 |
0.02 |
135.16 |
Guerrero |
15.16 |
6.06 |
36.39 |
9.59 |
0.11 |
0.03 |
0.49 |
0.24 |
0.00 |
0.00 |
6.17 |
6.03 |
2.01 |
0.43 |
3.59 |
2.69 |
0.00 |
0.00 |
4.62 |
27.77 |
0.24 |
0.03 |
4.08 |
0.22 |
0.03 |
0.19 |
0.00 |
0.14 |
13.48 |
0.16 |
0.03 |
32.12 |
12.75 |
4.59 |
3.18 |
29.27 |
8.40 |
0.00 |
48.15 |
4.16 |
7.66 |
2.15 |
0.24 |
0.05 |
0.00 |
10.49 |
36.90 |
2.83 |
0.00 |
1.06 |
4.18 |
0.16 |
3.10 |
0.03 |
15.41 |
Hidalgo |
4.88 |
4.34 |
59.48 |
44.97 |
0.19 |
0.35 |
2.92 |
0.38 |
0.00 |
0.03 |
30.07 |
10.62 |
0.03 |
1.46 |
8.33 |
8.14 |
0.00 |
5.36 |
20.38 |
54.86 |
1.39 |
0.48 |
10.96 |
1.14 |
0.44 |
0.10 |
0.32 |
0.00 |
18.35 |
0.79 |
0.10 |
85.34 |
21.96 |
7.95 |
4.12 |
41.99 |
16.13 |
2.88 |
114.53 |
0.00 |
14.80 |
0.03 |
0.63 |
0.32 |
0.25 |
8.59 |
51.21 |
4.66 |
0.00 |
2.15 |
3.07 |
0.00 |
9.89 |
3.58 |
153.16 |
Jalisco |
9.06 |
5.94 |
48.64 |
15.94 |
0.20 |
0.06 |
0.00 |
0.15 |
0.01 |
0.00 |
4.54 |
15.79 |
2.12 |
0.48 |
2.78 |
0.04 |
0.00 |
10.97 |
16.57 |
69.10 |
10.40 |
1.98 |
46.56 |
3.59 |
1.73 |
2.74 |
2.80 |
0.04 |
32.37 |
0.70 |
2.60 |
79.24 |
50.62 |
8.22 |
3.47 |
46.41 |
8.80 |
0.00 |
76.42 |
0.00 |
0.00 |
4.80 |
0.58 |
0.01 |
0.02 |
7.42 |
61.80 |
1.52 |
0.04 |
0.89 |
8.13 |
0.39 |
2.71 |
0.00 |
82.01 |
México |
6.22 |
4.32 |
144.02 |
33.79 |
0.43 |
0.37 |
3.42 |
0.28 |
0.01 |
0.00 |
17.48 |
15.85 |
10.29 |
0.50 |
5.51 |
4.97 |
0.00 |
0.33 |
23.54 |
95.42 |
10.59 |
13.00 |
72.96 |
0.03 |
2.83 |
20.15 |
30.26 |
0.06 |
58.02 |
0.48 |
0.01 |
63.75 |
37.56 |
10.62 |
13.37 |
45.63 |
13.14 |
0.61 |
76.76 |
7.26 |
8.83 |
0.01 |
0.28 |
0.69 |
11.40 |
10.17 |
0.00 |
4.81 |
0.05 |
0.67 |
8.79 |
0.86 |
10.13 |
0.06 |
246.69 |
Michoacán de Ocampo |
23.21 |
11.15 |
68.85 |
13.40 |
0.29 |
0.33 |
3.01 |
0.45 |
0.00 |
0.00 |
3.58 |
6.89 |
1.84 |
0.37 |
4.58 |
1.31 |
0.00 |
3.35 |
10.12 |
49.17 |
0.29 |
8.14 |
3.05 |
0.35 |
1.12 |
1.37 |
0.16 |
0.14 |
6.26 |
0.41 |
0.61 |
31.29 |
25.65 |
6.85 |
0.65 |
38.27 |
9.10 |
2.95 |
14.11 |
0.00 |
1.64 |
0.00 |
0.31 |
0.06 |
0.02 |
23.30 |
47.96 |
4.07 |
0.00 |
0.25 |
8.26 |
1.21 |
3.05 |
0.12 |
24.36 |
Morelos |
24.22 |
7.00 |
22.11 |
70.44 |
1.01 |
0.24 |
13.33 |
0.62 |
0.00 |
0.00 |
5.13 |
15.54 |
0.72 |
1.82 |
15.25 |
0.10 |
0.10 |
1.68 |
34.29 |
91.88 |
24.02 |
3.21 |
17.60 |
1.01 |
0.48 |
2.69 |
2.11 |
0.38 |
57.49 |
1.10 |
0.05 |
107.89 |
45.41 |
15.44 |
3.12 |
89.05 |
31.07 |
10.21 |
128.99 |
0.00 |
7.96 |
8.82 |
0.96 |
0.29 |
0.38 |
18.89 |
121.75 |
8.63 |
0.05 |
2.11 |
4.70 |
0.14 |
0.67 |
0.00 |
41.48 |
Nayarit |
6.35 |
6.73 |
13.00 |
4.91 |
0.08 |
0.08 |
0.68 |
0.08 |
0.00 |
0.00 |
1.59 |
0.00 |
0.76 |
0.00 |
8.54 |
0.98 |
0.00 |
6.65 |
11.49 |
17.00 |
0.76 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.15 |
8.31 |
0.00 |
0.08 |
9.45 |
10.43 |
1.36 |
0.68 |
11.18 |
3.17 |
0.30 |
56.60 |
0.00 |
29.09 |
0.76 |
0.91 |
0.00 |
0.38 |
10.13 |
5.97 |
1.66 |
0.00 |
0.38 |
0.91 |
0.38 |
1.81 |
0.00 |
34.76 |
Nuevo León |
10.80 |
5.19 |
45.66 |
15.81 |
1.01 |
1.28 |
2.78 |
0.19 |
0.00 |
0.83 |
20.99 |
16.63 |
7.93 |
0.52 |
8.63 |
5.47 |
0.02 |
7.78 |
31.77 |
33.07 |
0.89 |
1.58 |
8.75 |
6.86 |
0.85 |
0.36 |
0.36 |
0.07 |
16.14 |
1.41 |
0.83 |
36.18 |
48.85 |
8.68 |
6.48 |
63.80 |
11.47 |
0.92 |
193.27 |
0.00 |
5.45 |
57.79 |
2.17 |
0.54 |
0.05 |
43.52 |
61.21 |
5.12 |
0.03 |
2.12 |
14.74 |
0.16 |
17.62 |
0.16 |
52.98 |
Oaxaca |
8.72 |
12.04 |
47.82 |
12.32 |
0.55 |
0.14 |
3.01 |
0.43 |
0.00 |
0.00 |
3.68 |
5.49 |
3.65 |
0.81 |
5.68 |
3.99 |
0.00 |
0.31 |
15.17 |
31.50 |
1.96 |
1.29 |
27.01 |
2.82 |
0.21 |
2.27 |
0.17 |
0.12 |
17.89 |
0.88 |
0.14 |
34.54 |
23.79 |
5.23 |
1.58 |
33.18 |
12.40 |
9.27 |
88.78 |
0.05 |
1.70 |
3.32 |
0.53 |
0.12 |
7.62 |
3.61 |
55.41 |
3.96 |
0.07 |
5.95 |
2.99 |
0.00 |
3.65 |
1.77 |
19.87 |
Puebla |
6.84 |
3.32 |
44.26 |
8.82 |
0.18 |
0.01 |
2.25 |
0.16 |
0.00 |
0.00 |
1.68 |
6.95 |
1.93 |
0.55 |
3.52 |
2.94 |
0.00 |
8.73 |
18.09 |
56.19 |
7.66 |
11.81 |
30.24 |
0.00 |
0.86 |
3.45 |
10.34 |
0.07 |
33.51 |
0.83 |
6.83 |
41.63 |
37.57 |
10.92 |
0.80 |
34.85 |
13.10 |
2.01 |
64.70 |
0.00 |
2.35 |
4.98 |
0.30 |
0.30 |
3.84 |
17.43 |
44.50 |
3.14 |
0.06 |
1.01 |
3.67 |
0.33 |
10.23 |
0.33 |
16.26 |
Querétaro |
3.14 |
6.83 |
93.23 |
20.65 |
0.17 |
0.89 |
22.51 |
0.30 |
0.00 |
0.00 |
4.28 |
16.41 |
17.38 |
1.14 |
8.22 |
6.53 |
0.00 |
0.81 |
51.26 |
85.55 |
11.70 |
0.00 |
31.41 |
1.61 |
1.44 |
2.80 |
9.62 |
0.00 |
54.82 |
2.42 |
0.08 |
226.94 |
79.02 |
13.40 |
5.34 |
33.28 |
18.53 |
0.55 |
100.48 |
12.13 |
15.86 |
5.55 |
0.00 |
0.17 |
7.21 |
27.39 |
87.33 |
6.91 |
0.00 |
3.99 |
4.54 |
0.04 |
0.00 |
0.00 |
89.28 |
Quintana Roo |
13.90 |
27.35 |
77.82 |
45.81 |
0.44 |
0.11 |
9.34 |
0.06 |
0.00 |
0.00 |
28.24 |
33.96 |
7.39 |
0.89 |
22.79 |
0.00 |
0.00 |
14.29 |
45.97 |
74.88 |
2.67 |
0.39 |
42.69 |
15.01 |
1.22 |
3.67 |
1.45 |
0.00 |
51.75 |
0.78 |
8.56 |
158.65 |
7.67 |
85.27 |
2.11 |
135.19 |
19.96 |
9.01 |
168.21 |
0.00 |
13.62 |
19.73 |
4.45 |
0.78 |
0.17 |
50.70 |
84.77 |
7.56 |
0.00 |
11.51 |
8.67 |
2.28 |
17.18 |
1.28 |
47.47 |
San Luis Potosí |
10.78 |
3.75 |
68.51 |
9.64 |
0.21 |
0.14 |
3.86 |
0.24 |
0.10 |
0.00 |
12.91 |
12.33 |
5.54 |
0.76 |
11.09 |
0.00 |
0.00 |
1.86 |
18.14 |
63.97 |
15.91 |
5.78 |
16.01 |
1.41 |
0.45 |
0.48 |
0.03 |
0.03 |
28.64 |
4.75 |
2.03 |
121.67 |
44.31 |
12.88 |
2.13 |
97.64 |
9.19 |
25.96 |
152.93 |
0.00 |
9.36 |
0.62 |
0.62 |
0.21 |
0.00 |
26.92 |
50.16 |
8.26 |
0.10 |
0.00 |
3.06 |
2.65 |
10.67 |
0.07 |
57.12 |
Sinaloa |
7.05 |
10.45 |
50.75 |
13.57 |
0.25 |
0.16 |
9.17 |
0.06 |
0.03 |
0.00 |
18.40 |
8.27 |
2.43 |
0.12 |
4.43 |
1.34 |
0.03 |
1.37 |
7.11 |
54.46 |
0.34 |
0.00 |
0.53 |
0.03 |
0.03 |
0.12 |
0.50 |
0.47 |
27.51 |
0.16 |
0.00 |
34.03 |
12.41 |
4.90 |
1.00 |
38.96 |
9.20 |
0.59 |
99.63 |
0.00 |
2.65 |
3.28 |
0.90 |
0.12 |
0.59 |
2.43 |
23.49 |
1.19 |
0.00 |
1.28 |
2.31 |
0.00 |
2.78 |
0.00 |
6.52 |
Sonora |
22.31 |
5.18 |
33.30 |
14.30 |
0.38 |
0.13 |
5.97 |
0.16 |
0.00 |
0.00 |
9.15 |
9.53 |
1.43 |
0.22 |
4.54 |
1.14 |
0.03 |
1.21 |
12.77 |
38.42 |
1.94 |
0.44 |
5.37 |
2.13 |
0.00 |
0.06 |
0.67 |
0.03 |
10.39 |
1.53 |
0.99 |
62.51 |
4.64 |
1.59 |
1.08 |
38.80 |
3.46 |
3.81 |
102.26 |
0.00 |
23.90 |
1.05 |
1.18 |
0.00 |
2.51 |
35.56 |
28.57 |
6.39 |
0.00 |
0.86 |
0.51 |
0.16 |
1.14 |
0.00 |
32.60 |
Tabasco |
5.48 |
8.41 |
75.92 |
23.30 |
0.30 |
0.11 |
11.54 |
0.15 |
0.00 |
0.00 |
8.34 |
4.91 |
0.00 |
5.75 |
5.94 |
0.04 |
0.00 |
13.29 |
23.83 |
43.82 |
0.69 |
0.30 |
25.89 |
0.00 |
0.08 |
0.30 |
0.08 |
0.00 |
15.50 |
6.59 |
0.00 |
78.20 |
24.14 |
14.77 |
2.82 |
41.31 |
9.52 |
2.82 |
142.28 |
0.00 |
19.65 |
0.34 |
0.88 |
0.04 |
0.00 |
0.76 |
85.09 |
6.32 |
0.00 |
0.61 |
4.04 |
0.00 |
3.27 |
0.04 |
143.23 |
Tamaulipas |
5.15 |
11.03 |
30.18 |
15.88 |
0.27 |
0.70 |
3.72 |
0.22 |
0.03 |
0.00 |
6.39 |
9.82 |
1.43 |
0.43 |
6.98 |
0.03 |
0.00 |
0.81 |
17.91 |
26.11 |
0.30 |
0.03 |
1.65 |
0.00 |
0.00 |
0.00 |
0.00 |
0.03 |
21.39 |
0.67 |
0.00 |
41.69 |
21.74 |
7.79 |
1.83 |
50.40 |
7.71 |
0.43 |
104.23 |
0.00 |
21.06 |
11.00 |
0.81 |
0.03 |
0.00 |
2.56 |
23.76 |
3.10 |
0.00 |
1.62 |
1.29 |
0.16 |
6.01 |
2.08 |
22.90 |
Tlaxcala |
4.82 |
1.35 |
7.30 |
3.05 |
0.07 |
0.00 |
0.28 |
0.14 |
0.00 |
0.00 |
0.00 |
1.06 |
0.21 |
0.14 |
1.56 |
0.07 |
0.00 |
0.64 |
13.33 |
60.54 |
0.43 |
2.27 |
4.04 |
0.71 |
0.28 |
0.28 |
0.57 |
0.07 |
9.78 |
0.85 |
1.77 |
7.80 |
2.06 |
0.71 |
0.21 |
3.76 |
1.42 |
0.64 |
12.55 |
0.00 |
1.35 |
0.14 |
0.00 |
0.07 |
0.00 |
7.09 |
0.50 |
3.19 |
0.00 |
0.00 |
0.50 |
0.00 |
0.00 |
0.00 |
9.21 |
Veracruz de Ignacio de la Llave |
5.00 |
6.17 |
39.84 |
12.94 |
0.47 |
0.23 |
1.27 |
0.23 |
0.00 |
0.00 |
3.24 |
5.50 |
0.00 |
2.87 |
2.68 |
0.07 |
0.00 |
9.44 |
16.63 |
31.95 |
0.76 |
0.45 |
14.76 |
1.19 |
0.43 |
0.23 |
0.39 |
0.16 |
27.29 |
2.81 |
0.46 |
20.31 |
21.51 |
8.12 |
4.79 |
43.74 |
14.60 |
5.03 |
70.38 |
9.52 |
7.85 |
10.15 |
0.38 |
0.02 |
0.02 |
8.33 |
41.23 |
4.26 |
0.00 |
1.40 |
2.49 |
1.29 |
2.40 |
0.15 |
40.22 |
Yucatán |
0.87 |
3.99 |
5.03 |
0.48 |
0.13 |
0.00 |
1.78 |
0.00 |
0.00 |
0.00 |
0.13 |
1.99 |
0.26 |
0.00 |
0.82 |
0.00 |
0.00 |
0.00 |
3.21 |
2.60 |
0.00 |
0.00 |
1.17 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
1.21 |
0.00 |
0.00 |
0.04 |
2.12 |
2.17 |
0.17 |
12.26 |
0.48 |
3.47 |
2.99 |
0.00 |
1.56 |
0.17 |
0.04 |
0.04 |
0.00 |
7.80 |
19.80 |
0.65 |
0.00 |
0.00 |
0.04 |
0.13 |
0.43 |
0.13 |
12.65 |
Zacatecas |
27.71 |
11.31 |
50.62 |
20.60 |
0.47 |
0.00 |
10.83 |
0.36 |
0.00 |
0.00 |
19.00 |
8.82 |
3.73 |
0.30 |
6.28 |
3.43 |
0.00 |
2.90 |
11.90 |
48.07 |
0.95 |
0.12 |
0.47 |
0.36 |
0.06 |
0.06 |
0.47 |
0.00 |
6.81 |
2.72 |
0.30 |
104.55 |
40.73 |
11.37 |
14.98 |
71.52 |
10.18 |
2.60 |
101.95 |
0.00 |
19.06 |
3.14 |
0.65 |
0.41 |
0.00 |
10.24 |
43.75 |
4.56 |
0.18 |
5.45 |
3.79 |
0.06 |
12.97 |
0.30 |
52.99 |
Posicion de queretaro en 2020 por tipo de delito
posicionAnualporDelito<-c()
for (i in 1:length(losDelitos)) {
a<-tasaDelitoEstado2020[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaDelitoEstado2020[tasaDelitoEstado2020[i+1]>a,i+1])}
posicionAnualporDelito<-c(posicionAnualporDelito,b)
}
posicionesAnualporDelito<-data.frame(losDelitos, posicionAnualporDelito)
posicionesAnualporDelito<-posicionesAnualporDelito[order(posicionesAnualporDelito$posicionAnualporDelito),]
names(posicionesAnualporDelito)<-c("Subtipo de delito", "Posición que ocupa Querétaro a nivel nacional en ese delito")
kable(posicionesAnualporDelito[posicionesAnualporDelito[2]>0,])
13 |
Acoso sexual |
1 |
32 |
Otros robos |
1 |
40 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
1 |
7 |
Otros delitos que atentan contra la vida y la integridad corporal |
2 |
6 |
Aborto |
3 |
27 |
Robo en transporte individual |
3 |
16 |
Violación equiparada |
4 |
20 |
Robo de vehículo automotor |
4 |
33 |
Fraude |
4 |
45 |
Otros delitos contra la sociedad |
4 |
3 |
Lesiones dolosas |
5 |
19 |
Robo a casa habitación |
5 |
21 |
Robo de autopartes |
5 |
26 |
Robo en transporte público colectivo |
5 |
25 |
Robo en transporte público individual |
6 |
29 |
Robo a negocio |
6 |
35 |
Extorsión |
6 |
37 |
Despojo |
6 |
50 |
Falsedad |
6 |
55 |
Otros delitos del Fuero Común |
6 |
8 |
Secuestro |
7 |
23 |
Robo a transeúnte en vía pública |
7 |
30 |
Robo de ganado |
7 |
24 |
Robo a transeúnte en espacio abierto al público |
9 |
42 |
Otros delitos contra la familia |
9 |
47 |
Amenazas |
9 |
12 |
Abuso sexual |
10 |
14 |
Hostigamiento sexual |
10 |
41 |
Incumplimiento de obligaciones de asistencia familiar |
10 |
34 |
Abuso de confianza |
11 |
46 |
Narcomenudeo |
11 |
48 |
Allanamiento de morada |
11 |
2 |
Homicidio culposo |
12 |
4 |
Lesiones culposas |
13 |
15 |
Violación simple |
13 |
44 |
Trata de personas |
15 |
51 |
Falsificación |
15 |
31 |
Robo de maquinaria |
18 |
39 |
Violencia familiar |
18 |
11 |
Otros delitos que atentan contra la libertad personal |
21 |
18 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
25 |
36 |
Daño a la propiedad |
26 |
52 |
Contra el medio ambiente |
26 |
1 |
Homicidio doloso |
27 |
5 |
Feminicidio |
27 |
38 |
Otros delitos contra el patrimonio |
28 |
Querétaro en Junio
losDelitosMes<-unique(delitos2$Subtipo.de.delito)
losDelitos2020Mes<-subset(losDelitos2020, losDelitos2020$meses==esteMes)
delitoEstado2020mes=as.data.frame(order(unique(losDelitos2020Mes$Clave_Ent)))
for (i in 1:length(losDelitosMes)) {
a<-subset(losDelitos2020Mes,losDelitos2020Mes$Subtipo.de.delito==losDelitosMes[i])
b<-as.data.frame(aggregate(a$value~a$Clave_Ent,a,sum))[2]
delitoEstado2020mes<-cbind(delitoEstado2020mes,b)
}
names(delitoEstado2020mes)<-c("claveEntidad",losDelitosMes)
tasaDelitoEstado2020mes<-delitoEstado2020mes
tasaDelitoEstado2020mes[,2:56]<-round(delitoEstado2020mes[,2:56]/ent[,micol]*100000,2)
for (i in 1:length(nomEnt)) {
delitoEstado2020mes[i,1]<-nomEnt[i]
tasaDelitoEstado2020mes[i,1]<-nomEnt[i]
}
posicionAnualporDelitoMes<-c()
for (i in 1:length(losDelitos)) {
a<-tasaDelitoEstado2020mes[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaDelitoEstado2020mes[tasaDelitoEstado2020mes[i+1]>a,i+1])}
posicionAnualporDelitoMes<-c(posicionAnualporDelitoMes,b)
}
posicionesAnualporDelitoMes<-data.frame(losDelitosMes, posicionAnualporDelitoMes)
posicionesAnualporDelitoMes<-posicionesAnualporDelitoMes[order(posicionesAnualporDelitoMes$posicionAnualporDelitoMes),]
names(posicionesAnualporDelitoMes)<-c("Subtipo de delito", "Posición que ocupa Querétaro a nivel nacional en ese delito en el mes")
kable(posicionesAnualporDelitoMes[posicionesAnualporDelitoMes[2]>0,],caption="Posición de Querétaro en el mes")
Posición de Querétaro en el mes
13 |
Acoso sexual |
1 |
40 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
1 |
45 |
Otros delitos contra la sociedad |
1 |
7 |
Otros delitos que atentan contra la vida y la integridad corporal |
2 |
32 |
Otros robos |
2 |
27 |
Robo en transporte individual |
3 |
16 |
Violación equiparada |
4 |
21 |
Robo de autopartes |
4 |
29 |
Robo a negocio |
4 |
50 |
Falsedad |
4 |
19 |
Robo a casa habitación |
5 |
20 |
Robo de vehículo automotor |
5 |
37 |
Despojo |
5 |
3 |
Lesiones dolosas |
6 |
26 |
Robo en transporte público colectivo |
6 |
33 |
Fraude |
6 |
35 |
Extorsión |
6 |
55 |
Otros delitos del Fuero Común |
6 |
23 |
Robo a transeúnte en vía pública |
8 |
25 |
Robo en transporte público individual |
8 |
30 |
Robo de ganado |
8 |
6 |
Aborto |
9 |
24 |
Robo a transeúnte en espacio abierto al público |
9 |
12 |
Abuso sexual |
10 |
14 |
Hostigamiento sexual |
10 |
46 |
Narcomenudeo |
10 |
42 |
Otros delitos contra la familia |
11 |
15 |
Violación simple |
12 |
41 |
Incumplimiento de obligaciones de asistencia familiar |
12 |
47 |
Amenazas |
12 |
48 |
Allanamiento de morada |
12 |
2 |
Homicidio culposo |
14 |
4 |
Lesiones culposas |
15 |
31 |
Robo de maquinaria |
15 |
34 |
Abuso de confianza |
15 |
39 |
Violencia familiar |
17 |
11 |
Otros delitos que atentan contra la libertad personal |
21 |
51 |
Falsificación |
22 |
36 |
Daño a la propiedad |
25 |
18 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
27 |
38 |
Otros delitos contra el patrimonio |
27 |
1 |
Homicidio doloso |
28 |
Tasa en el mes
kable(tasaDelitoEstado2020mes)
Aguascalientes |
0.54 |
1.02 |
21.88 |
6.39 |
0.14 |
0.07 |
0.27 |
0.00 |
0 |
0.00 |
2.65 |
0.00 |
0.00 |
1.29 |
1.77 |
0.82 |
0.00 |
4.69 |
13.38 |
8.02 |
5.98 |
0.00 |
9.78 |
0.07 |
0.75 |
0.14 |
0.27 |
0.00 |
11.07 |
1.16 |
0.07 |
11.07 |
17.66 |
4.82 |
0.61 |
27.52 |
2.85 |
2.11 |
15.69 |
0.07 |
1.36 |
0.27 |
0.00 |
0.00 |
0.00 |
11.75 |
23.17 |
4.42 |
0.07 |
0.54 |
3.53 |
0.61 |
2.24 |
1.16 |
12.09 |
Baja California |
6.12 |
1.47 |
13.19 |
3.93 |
0.05 |
0.00 |
5.85 |
0.03 |
0 |
0.00 |
10.39 |
5.07 |
0.00 |
1.09 |
1.58 |
0.77 |
0.00 |
0.83 |
7.13 |
25.83 |
0.19 |
0.03 |
11.16 |
0.00 |
0.05 |
0.03 |
0.00 |
0.00 |
9.64 |
0.05 |
0.00 |
17.28 |
6.38 |
1.23 |
0.24 |
18.24 |
3.45 |
3.20 |
33.30 |
0.00 |
2.32 |
1.79 |
1.63 |
0.21 |
0.13 |
22.14 |
16.02 |
5.42 |
0.00 |
0.43 |
1.58 |
0.00 |
2.56 |
0.05 |
18.40 |
Baja California Sur |
0.36 |
1.08 |
17.80 |
6.33 |
0.00 |
0.00 |
2.03 |
0.00 |
0 |
0.00 |
0.96 |
5.14 |
1.67 |
0.12 |
2.87 |
0.84 |
0.00 |
0.72 |
13.14 |
5.38 |
0.00 |
0.12 |
1.08 |
0.60 |
0.00 |
0.00 |
0.00 |
0.00 |
4.78 |
0.36 |
0.12 |
34.16 |
17.08 |
4.06 |
2.03 |
13.62 |
4.54 |
2.39 |
28.79 |
0.12 |
6.45 |
1.79 |
0.72 |
0.00 |
0.12 |
5.61 |
18.51 |
2.75 |
0.00 |
2.15 |
1.08 |
0.00 |
3.70 |
0.00 |
11.95 |
Campeche |
0.87 |
0.77 |
28.07 |
9.78 |
0.10 |
0.10 |
2.61 |
0.00 |
0 |
0.00 |
1.45 |
4.16 |
0.68 |
0.39 |
0.77 |
2.23 |
0.00 |
0.48 |
11.03 |
3.97 |
0.68 |
0.19 |
1.45 |
0.19 |
0.19 |
0.19 |
0.00 |
0.00 |
5.90 |
0.68 |
0.00 |
24.29 |
7.94 |
3.58 |
0.39 |
24.29 |
2.13 |
2.32 |
16.74 |
0.00 |
1.45 |
0.00 |
0.39 |
0.00 |
0.00 |
2.03 |
30.39 |
3.48 |
0.00 |
0.10 |
2.03 |
0.19 |
1.06 |
0.00 |
8.81 |
Coahuila de Zaragoza |
0.24 |
0.82 |
14.47 |
2.21 |
0.09 |
0.00 |
0.21 |
0.03 |
0 |
0.00 |
0.15 |
4.36 |
1.88 |
0.09 |
0.51 |
1.06 |
0.03 |
0.21 |
5.30 |
1.24 |
0.33 |
0.00 |
0.42 |
0.06 |
0.03 |
0.00 |
0.00 |
0.00 |
2.51 |
0.48 |
0.18 |
11.53 |
5.15 |
2.57 |
0.18 |
25.25 |
1.60 |
4.69 |
46.92 |
0.00 |
0.91 |
0.51 |
0.12 |
0.00 |
0.00 |
30.67 |
26.76 |
2.91 |
0.00 |
0.00 |
0.45 |
0.03 |
1.21 |
0.82 |
9.78 |
Colima |
7.17 |
0.87 |
11.74 |
6.80 |
0.00 |
0.00 |
0.00 |
0.12 |
0 |
0.00 |
4.20 |
5.44 |
0.00 |
0.74 |
2.60 |
0.00 |
0.00 |
1.36 |
15.33 |
11.99 |
0.00 |
0.00 |
0.87 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
8.16 |
0.49 |
0.00 |
51.29 |
15.70 |
4.57 |
1.85 |
28.30 |
2.72 |
2.10 |
45.36 |
0.00 |
7.79 |
0.00 |
0.25 |
0.12 |
1.24 |
18.79 |
33.00 |
1.36 |
0.00 |
0.74 |
1.73 |
0.25 |
2.84 |
0.00 |
9.76 |
Chiapas |
0.48 |
0.95 |
1.14 |
1.00 |
0.10 |
0.02 |
0.19 |
0.00 |
0 |
0.00 |
0.24 |
0.22 |
0.10 |
0.05 |
0.63 |
0.07 |
0.00 |
1.22 |
0.24 |
1.68 |
0.00 |
0.00 |
0.14 |
0.14 |
0.00 |
0.00 |
0.00 |
0.00 |
0.17 |
0.02 |
0.00 |
0.92 |
0.37 |
0.17 |
0.02 |
1.61 |
0.19 |
0.22 |
2.61 |
0.00 |
0.39 |
0.02 |
0.03 |
0.00 |
0.15 |
1.22 |
2.32 |
0.12 |
0.02 |
0.02 |
0.07 |
0.07 |
0.07 |
0.08 |
1.36 |
Chihuahua |
4.13 |
1.01 |
11.76 |
3.36 |
0.13 |
0.03 |
0.75 |
0.05 |
0 |
0.00 |
2.07 |
5.84 |
0.57 |
0.72 |
2.76 |
0.72 |
0.00 |
0.88 |
5.48 |
9.61 |
1.21 |
0.00 |
1.32 |
0.28 |
0.00 |
0.00 |
0.00 |
0.03 |
3.59 |
0.13 |
0.41 |
8.68 |
14.24 |
2.87 |
0.00 |
18.11 |
1.81 |
2.43 |
33.43 |
0.10 |
5.14 |
0.10 |
0.18 |
0.10 |
0.00 |
7.11 |
7.47 |
0.75 |
0.00 |
0.41 |
1.34 |
0.00 |
1.83 |
0.03 |
3.64 |
Ciudad de México |
0.58 |
0.65 |
5.49 |
5.32 |
0.08 |
0.17 |
0.92 |
0.00 |
0 |
0.00 |
1.81 |
5.13 |
1.56 |
0.00 |
0.71 |
1.76 |
0.00 |
1.61 |
2.92 |
5.72 |
7.89 |
0.09 |
10.00 |
2.58 |
0.70 |
3.96 |
1.25 |
0.01 |
9.68 |
0.00 |
0.00 |
25.67 |
19.31 |
5.07 |
0.33 |
10.17 |
3.98 |
4.42 |
35.34 |
0.00 |
0.82 |
0.03 |
0.29 |
0.27 |
1.24 |
3.77 |
18.03 |
0.85 |
0.02 |
0.52 |
2.59 |
1.01 |
5.23 |
0.02 |
9.64 |
Durango |
0.58 |
1.47 |
12.37 |
5.53 |
0.11 |
0.05 |
0.00 |
0.00 |
0 |
0.00 |
1.21 |
2.84 |
0.53 |
0.11 |
1.84 |
0.05 |
0.00 |
1.89 |
7.90 |
3.53 |
0.47 |
0.16 |
0.89 |
0.05 |
0.00 |
0.11 |
0.00 |
0.00 |
5.53 |
0.11 |
0.00 |
13.90 |
7.42 |
3.84 |
0.42 |
15.58 |
2.00 |
0.00 |
30.05 |
0.00 |
1.16 |
3.58 |
0.00 |
0.00 |
0.11 |
4.63 |
6.37 |
0.74 |
0.00 |
0.05 |
0.74 |
0.11 |
0.26 |
0.11 |
5.05 |
Guanajuato |
3.52 |
1.12 |
19.52 |
0.05 |
0.06 |
0.03 |
1.14 |
0.03 |
0 |
0.00 |
0.00 |
2.12 |
0.57 |
0.22 |
1.11 |
0.11 |
0.00 |
0.09 |
5.28 |
5.10 |
0.00 |
0.02 |
0.44 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
6.03 |
0.11 |
0.00 |
24.85 |
5.86 |
2.12 |
0.66 |
16.06 |
2.45 |
0.36 |
19.40 |
0.00 |
2.75 |
0.05 |
0.63 |
0.00 |
0.00 |
27.99 |
16.47 |
0.52 |
0.02 |
0.36 |
0.74 |
0.00 |
0.19 |
0.00 |
23.50 |
Guerrero |
3.26 |
0.84 |
5.92 |
1.41 |
0.00 |
0.00 |
0.05 |
0.03 |
0 |
0.00 |
1.17 |
0.82 |
0.33 |
0.08 |
0.82 |
0.52 |
0.00 |
0.00 |
0.76 |
4.38 |
0.05 |
0.00 |
0.52 |
0.03 |
0.00 |
0.03 |
0.00 |
0.00 |
1.82 |
0.05 |
0.00 |
5.33 |
2.04 |
0.82 |
0.68 |
5.41 |
1.88 |
0.00 |
8.02 |
0.38 |
1.47 |
0.41 |
0.03 |
0.00 |
0.00 |
1.96 |
7.04 |
0.57 |
0.00 |
0.22 |
0.68 |
0.03 |
0.98 |
0.00 |
2.85 |
Hidalgo |
0.95 |
0.79 |
9.51 |
5.96 |
0.06 |
0.03 |
0.79 |
0.10 |
0 |
0.00 |
4.94 |
2.35 |
0.00 |
0.35 |
1.33 |
1.96 |
0.00 |
1.08 |
3.90 |
9.03 |
0.22 |
0.03 |
2.38 |
0.48 |
0.22 |
0.00 |
0.00 |
0.00 |
4.40 |
0.22 |
0.03 |
13.37 |
3.52 |
1.14 |
0.67 |
6.88 |
2.28 |
0.48 |
21.04 |
0.00 |
3.20 |
0.00 |
0.29 |
0.06 |
0.03 |
1.20 |
8.37 |
0.82 |
0.00 |
0.54 |
0.67 |
0.00 |
1.93 |
1.74 |
28.27 |
Jalisco |
1.76 |
0.84 |
8.86 |
2.65 |
0.02 |
0.01 |
0.00 |
0.02 |
0 |
0.00 |
0.92 |
2.60 |
0.40 |
0.06 |
0.34 |
0.01 |
0.00 |
1.44 |
3.00 |
12.21 |
1.93 |
0.28 |
8.30 |
0.82 |
0.25 |
0.41 |
0.55 |
0.00 |
5.33 |
0.16 |
0.37 |
12.42 |
8.40 |
1.33 |
0.56 |
8.22 |
1.65 |
0.00 |
12.58 |
0.00 |
0.00 |
0.93 |
0.08 |
0.00 |
0.00 |
1.19 |
10.54 |
0.27 |
0.00 |
0.15 |
1.59 |
0.04 |
0.50 |
0.00 |
14.47 |
México |
0.95 |
0.73 |
24.76 |
5.88 |
0.08 |
0.05 |
0.57 |
0.05 |
0 |
0.00 |
2.93 |
3.03 |
2.50 |
0.08 |
1.02 |
0.92 |
0.00 |
0.03 |
3.83 |
16.76 |
2.09 |
1.97 |
11.55 |
0.00 |
0.51 |
3.31 |
4.85 |
0.01 |
8.94 |
0.07 |
0.00 |
12.02 |
6.95 |
1.72 |
3.17 |
7.53 |
2.55 |
0.10 |
14.75 |
1.51 |
1.68 |
0.00 |
0.05 |
0.07 |
1.51 |
1.77 |
0.00 |
0.87 |
0.00 |
0.13 |
1.61 |
0.20 |
1.81 |
0.00 |
37.22 |
Michoacán de Ocampo |
3.29 |
1.33 |
10.12 |
1.90 |
0.04 |
0.06 |
0.63 |
0.02 |
0 |
0.00 |
0.57 |
1.10 |
0.25 |
0.04 |
0.76 |
0.14 |
0.00 |
0.57 |
1.64 |
7.63 |
0.02 |
1.10 |
0.39 |
0.10 |
0.12 |
0.29 |
0.00 |
0.02 |
1.35 |
0.02 |
0.10 |
5.46 |
4.05 |
1.23 |
0.14 |
6.48 |
1.66 |
0.45 |
2.50 |
0.00 |
0.53 |
0.00 |
0.04 |
0.00 |
0.00 |
3.72 |
8.39 |
0.80 |
0.00 |
0.02 |
1.57 |
0.14 |
0.49 |
0.02 |
4.09 |
Morelos |
3.16 |
0.77 |
3.88 |
11.22 |
0.14 |
0.00 |
2.11 |
0.05 |
0 |
0.00 |
1.20 |
3.12 |
0.19 |
0.38 |
2.64 |
0.05 |
0.10 |
0.19 |
5.56 |
15.73 |
4.17 |
0.38 |
2.73 |
0.14 |
0.10 |
0.53 |
0.48 |
0.14 |
8.78 |
0.14 |
0.00 |
19.66 |
8.78 |
2.93 |
0.53 |
11.03 |
6.62 |
2.16 |
22.30 |
0.00 |
1.58 |
1.39 |
0.14 |
0.14 |
0.19 |
3.36 |
19.56 |
1.58 |
0.00 |
0.43 |
0.86 |
0.00 |
0.05 |
0.00 |
6.33 |
Nayarit |
0.83 |
1.44 |
2.49 |
1.89 |
0.00 |
0.00 |
0.23 |
0.00 |
0 |
0.00 |
0.30 |
0.00 |
0.30 |
0.00 |
1.59 |
0.30 |
0.00 |
1.51 |
2.12 |
2.72 |
0.23 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.08 |
1.44 |
0.00 |
0.00 |
1.06 |
1.21 |
0.38 |
0.08 |
2.64 |
0.68 |
0.00 |
10.43 |
0.00 |
4.91 |
0.15 |
0.15 |
0.00 |
0.15 |
2.12 |
1.59 |
0.30 |
0.00 |
0.00 |
0.08 |
0.08 |
0.23 |
0.00 |
6.05 |
Nuevo León |
2.20 |
1.01 |
8.00 |
3.11 |
0.17 |
0.21 |
0.50 |
0.07 |
0 |
0.21 |
3.99 |
3.33 |
1.39 |
0.12 |
1.86 |
1.04 |
0.02 |
1.35 |
7.86 |
5.59 |
0.14 |
0.28 |
1.23 |
1.11 |
0.23 |
0.07 |
0.09 |
0.00 |
4.20 |
0.23 |
0.14 |
6.70 |
8.68 |
1.53 |
1.18 |
10.26 |
1.87 |
0.09 |
39.62 |
0.00 |
1.02 |
11.61 |
0.43 |
0.19 |
0.00 |
8.54 |
9.96 |
0.87 |
0.02 |
0.36 |
2.19 |
0.02 |
2.78 |
0.02 |
9.69 |
Oaxaca |
1.34 |
1.98 |
6.52 |
1.98 |
0.10 |
0.00 |
0.53 |
0.07 |
0 |
0.00 |
0.57 |
0.91 |
0.62 |
0.17 |
0.81 |
0.62 |
0.00 |
0.02 |
2.53 |
5.42 |
0.17 |
0.24 |
3.58 |
0.48 |
0.02 |
0.29 |
0.10 |
0.05 |
3.03 |
0.17 |
0.02 |
6.38 |
3.39 |
1.00 |
0.12 |
5.68 |
1.79 |
1.43 |
15.69 |
0.00 |
0.24 |
0.60 |
0.00 |
0.05 |
1.05 |
0.67 |
9.17 |
0.62 |
0.00 |
0.98 |
0.62 |
0.00 |
0.33 |
0.57 |
2.75 |
Puebla |
0.92 |
0.49 |
7.64 |
1.25 |
0.04 |
0.00 |
0.52 |
0.03 |
0 |
0.00 |
0.34 |
1.03 |
0.40 |
0.13 |
0.55 |
0.42 |
0.00 |
1.68 |
3.29 |
8.61 |
1.23 |
2.59 |
5.24 |
0.00 |
0.12 |
0.71 |
1.80 |
0.03 |
6.01 |
0.07 |
1.86 |
6.28 |
6.53 |
2.20 |
0.12 |
5.73 |
2.29 |
0.30 |
11.79 |
0.00 |
0.40 |
0.91 |
0.10 |
0.04 |
0.58 |
2.94 |
7.70 |
0.28 |
0.00 |
0.12 |
0.80 |
0.01 |
3.41 |
0.06 |
2.72 |
Querétaro |
0.51 |
1.06 |
15.77 |
3.18 |
0.00 |
0.04 |
2.63 |
0.00 |
0 |
0.00 |
0.93 |
3.14 |
3.69 |
0.34 |
1.57 |
1.23 |
0.00 |
0.08 |
8.82 |
13.27 |
2.46 |
0.00 |
5.09 |
0.34 |
0.21 |
0.34 |
1.44 |
0.00 |
9.58 |
0.47 |
0.04 |
39.77 |
13.52 |
1.99 |
1.10 |
6.15 |
3.60 |
0.04 |
20.01 |
1.87 |
2.71 |
0.81 |
0.00 |
0.00 |
1.70 |
5.94 |
14.29 |
1.02 |
0.00 |
0.85 |
0.59 |
0.00 |
0.00 |
0.00 |
16.87 |
Quintana Roo |
2.61 |
4.34 |
13.51 |
8.06 |
0.17 |
0.00 |
1.50 |
0.00 |
0 |
0.00 |
5.28 |
7.06 |
1.67 |
0.11 |
3.89 |
0.00 |
0.00 |
2.84 |
8.23 |
14.34 |
0.56 |
0.00 |
5.95 |
1.89 |
0.28 |
0.28 |
0.17 |
0.00 |
6.78 |
0.22 |
2.22 |
28.68 |
0.95 |
12.90 |
0.50 |
22.68 |
3.61 |
1.78 |
29.02 |
0.00 |
3.06 |
3.89 |
0.22 |
0.06 |
0.00 |
8.28 |
15.79 |
1.33 |
0.00 |
2.22 |
1.45 |
0.44 |
3.67 |
0.44 |
8.78 |
San Luis Potosí |
1.82 |
0.48 |
12.84 |
1.41 |
0.07 |
0.03 |
0.83 |
0.03 |
0 |
0.00 |
2.69 |
1.93 |
0.90 |
0.28 |
2.24 |
0.00 |
0.00 |
0.41 |
3.17 |
11.15 |
1.51 |
1.79 |
3.72 |
0.28 |
0.17 |
0.14 |
0.00 |
0.03 |
5.06 |
0.96 |
0.83 |
23.38 |
7.78 |
2.48 |
0.38 |
18.94 |
1.62 |
4.03 |
27.13 |
0.00 |
1.93 |
0.31 |
0.17 |
0.03 |
0.00 |
6.33 |
10.19 |
1.62 |
0.00 |
0.00 |
0.62 |
0.38 |
2.03 |
0.00 |
11.43 |
Sinaloa |
1.09 |
1.84 |
10.26 |
2.78 |
0.03 |
0.00 |
1.72 |
0.00 |
0 |
0.00 |
3.31 |
1.43 |
0.47 |
0.03 |
1.03 |
0.25 |
0.00 |
0.22 |
1.93 |
7.95 |
0.12 |
0.00 |
0.06 |
0.00 |
0.03 |
0.00 |
0.06 |
0.03 |
5.74 |
0.03 |
0.00 |
6.58 |
2.15 |
1.12 |
0.22 |
7.42 |
1.72 |
0.16 |
19.59 |
0.00 |
0.53 |
0.53 |
0.19 |
0.00 |
0.03 |
0.41 |
4.24 |
0.25 |
0.00 |
0.31 |
0.53 |
0.00 |
0.56 |
0.00 |
0.97 |
Sonora |
3.78 |
1.21 |
6.45 |
2.38 |
0.16 |
0.03 |
0.79 |
0.00 |
0 |
0.00 |
1.87 |
1.30 |
0.25 |
0.10 |
0.51 |
0.16 |
0.00 |
0.29 |
2.26 |
5.40 |
0.29 |
0.10 |
0.64 |
0.35 |
0.00 |
0.00 |
0.13 |
0.03 |
1.62 |
0.19 |
0.10 |
8.87 |
1.08 |
0.22 |
0.19 |
7.44 |
0.60 |
0.54 |
20.88 |
0.00 |
5.02 |
0.06 |
0.19 |
0.00 |
0.57 |
5.53 |
5.21 |
1.08 |
0.00 |
0.00 |
0.10 |
0.03 |
0.13 |
0.00 |
6.80 |
Tabasco |
0.91 |
1.29 |
12.22 |
3.43 |
0.00 |
0.00 |
2.36 |
0.04 |
0 |
0.00 |
1.56 |
0.57 |
0.00 |
0.88 |
1.10 |
0.00 |
0.00 |
2.51 |
3.58 |
5.98 |
0.11 |
0.11 |
4.61 |
0.00 |
0.04 |
0.23 |
0.00 |
0.00 |
3.01 |
1.07 |
0.00 |
12.49 |
5.03 |
3.24 |
0.23 |
7.39 |
1.71 |
0.65 |
24.90 |
0.00 |
3.92 |
0.08 |
0.11 |
0.00 |
0.00 |
0.23 |
14.35 |
1.07 |
0.00 |
0.08 |
0.57 |
0.00 |
0.57 |
0.00 |
24.56 |
Tamaulipas |
1.08 |
1.94 |
5.69 |
2.94 |
0.00 |
0.11 |
0.65 |
0.08 |
0 |
0.00 |
1.21 |
2.24 |
0.22 |
0.08 |
1.35 |
0.00 |
0.00 |
0.16 |
2.89 |
4.21 |
0.05 |
0.03 |
0.30 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
3.34 |
0.11 |
0.00 |
7.12 |
3.43 |
1.38 |
0.30 |
9.47 |
1.08 |
0.13 |
21.44 |
0.00 |
4.15 |
1.48 |
0.27 |
0.00 |
0.00 |
0.32 |
4.50 |
0.49 |
0.00 |
0.30 |
0.27 |
0.03 |
0.92 |
1.38 |
3.94 |
Tlaxcala |
0.92 |
0.07 |
1.21 |
0.57 |
0.00 |
0.00 |
0.07 |
0.07 |
0 |
0.00 |
0.00 |
0.28 |
0.00 |
0.00 |
0.21 |
0.00 |
0.00 |
0.07 |
1.21 |
10.70 |
0.07 |
0.21 |
0.64 |
0.07 |
0.00 |
0.14 |
0.14 |
0.00 |
1.63 |
0.35 |
0.14 |
1.49 |
0.50 |
0.07 |
0.00 |
0.85 |
0.14 |
0.00 |
1.28 |
0.00 |
0.14 |
0.00 |
0.00 |
0.07 |
0.00 |
1.42 |
0.14 |
0.78 |
0.00 |
0.00 |
0.14 |
0.00 |
0.00 |
0.00 |
0.99 |
Veracruz de Ignacio de la Llave |
0.72 |
0.91 |
7.00 |
2.02 |
0.03 |
0.03 |
0.21 |
0.03 |
0 |
0.00 |
0.50 |
0.85 |
0.00 |
0.71 |
0.45 |
0.00 |
0.00 |
1.61 |
2.74 |
4.85 |
0.12 |
0.09 |
2.35 |
0.20 |
0.00 |
0.03 |
0.12 |
0.02 |
4.35 |
0.49 |
0.09 |
3.30 |
3.65 |
1.11 |
0.87 |
7.53 |
2.47 |
0.81 |
12.60 |
1.70 |
1.51 |
1.64 |
0.07 |
0.01 |
0.01 |
1.44 |
7.40 |
0.58 |
0.00 |
0.19 |
0.42 |
0.14 |
0.44 |
0.01 |
6.79 |
Yucatán |
0.09 |
0.69 |
0.74 |
0.13 |
0.04 |
0.00 |
0.43 |
0.00 |
0 |
0.00 |
0.00 |
0.52 |
0.04 |
0.00 |
0.22 |
0.00 |
0.00 |
0.00 |
0.82 |
0.39 |
0.00 |
0.00 |
0.22 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.26 |
0.00 |
0.00 |
0.04 |
0.39 |
0.65 |
0.00 |
2.12 |
0.09 |
0.43 |
0.39 |
0.00 |
0.17 |
0.00 |
0.00 |
0.04 |
0.00 |
1.73 |
3.34 |
0.17 |
0.00 |
0.00 |
0.00 |
0.00 |
0.13 |
0.00 |
2.30 |
Zacatecas |
4.44 |
2.19 |
9.95 |
3.20 |
0.00 |
0.00 |
2.31 |
0.00 |
0 |
0.00 |
4.14 |
2.31 |
0.65 |
0.06 |
1.48 |
0.41 |
0.00 |
0.47 |
2.31 |
8.94 |
0.36 |
0.00 |
0.06 |
0.12 |
0.00 |
0.00 |
0.12 |
0.00 |
1.89 |
0.24 |
0.06 |
19.95 |
6.81 |
1.36 |
2.19 |
13.91 |
2.25 |
0.65 |
20.25 |
0.00 |
3.73 |
0.30 |
0.36 |
0.18 |
0.00 |
2.25 |
8.29 |
0.65 |
0.00 |
0.65 |
1.12 |
0.00 |
1.54 |
0.00 |
10.01 |
Absolutos en el mes
kable(delitoEstado2020mes)
Aguascalientes |
8 |
15 |
322 |
94 |
2 |
1 |
4 |
0 |
0 |
0 |
39 |
0 |
0 |
19 |
26 |
12 |
0 |
69 |
197 |
118 |
88 |
0 |
144 |
1 |
11 |
2 |
4 |
0 |
163 |
17 |
1 |
163 |
260 |
71 |
9 |
405 |
42 |
31 |
231 |
1 |
20 |
4 |
0 |
0 |
0 |
173 |
341 |
65 |
1 |
8 |
52 |
9 |
33 |
17 |
178 |
Baja California |
229 |
55 |
494 |
147 |
2 |
0 |
219 |
1 |
0 |
0 |
389 |
190 |
0 |
41 |
59 |
29 |
0 |
31 |
267 |
967 |
7 |
1 |
418 |
0 |
2 |
1 |
0 |
0 |
361 |
2 |
0 |
647 |
239 |
46 |
9 |
683 |
129 |
120 |
1247 |
0 |
87 |
67 |
61 |
8 |
5 |
829 |
600 |
203 |
0 |
16 |
59 |
0 |
96 |
2 |
689 |
Baja California Sur |
3 |
9 |
149 |
53 |
0 |
0 |
17 |
0 |
0 |
0 |
8 |
43 |
14 |
1 |
24 |
7 |
0 |
6 |
110 |
45 |
0 |
1 |
9 |
5 |
0 |
0 |
0 |
0 |
40 |
3 |
1 |
286 |
143 |
34 |
17 |
114 |
38 |
20 |
241 |
1 |
54 |
15 |
6 |
0 |
1 |
47 |
155 |
23 |
0 |
18 |
9 |
0 |
31 |
0 |
100 |
Campeche |
9 |
8 |
290 |
101 |
1 |
1 |
27 |
0 |
0 |
0 |
15 |
43 |
7 |
4 |
8 |
23 |
0 |
5 |
114 |
41 |
7 |
2 |
15 |
2 |
2 |
2 |
0 |
0 |
61 |
7 |
0 |
251 |
82 |
37 |
4 |
251 |
22 |
24 |
173 |
0 |
15 |
0 |
4 |
0 |
0 |
21 |
314 |
36 |
0 |
1 |
21 |
2 |
11 |
0 |
91 |
Coahuila de Zaragoza |
8 |
27 |
478 |
73 |
3 |
0 |
7 |
1 |
0 |
0 |
5 |
144 |
62 |
3 |
17 |
35 |
1 |
7 |
175 |
41 |
11 |
0 |
14 |
2 |
1 |
0 |
0 |
0 |
83 |
16 |
6 |
381 |
170 |
85 |
6 |
834 |
53 |
155 |
1550 |
0 |
30 |
17 |
4 |
0 |
0 |
1013 |
884 |
96 |
0 |
0 |
15 |
1 |
40 |
27 |
323 |
Colima |
58 |
7 |
95 |
55 |
0 |
0 |
0 |
1 |
0 |
0 |
34 |
44 |
0 |
6 |
21 |
0 |
0 |
11 |
124 |
97 |
0 |
0 |
7 |
0 |
0 |
0 |
0 |
0 |
66 |
4 |
0 |
415 |
127 |
37 |
15 |
229 |
22 |
17 |
367 |
0 |
63 |
0 |
2 |
1 |
10 |
152 |
267 |
11 |
0 |
6 |
14 |
2 |
23 |
0 |
79 |
Chiapas |
28 |
56 |
67 |
59 |
6 |
1 |
11 |
0 |
0 |
0 |
14 |
13 |
6 |
3 |
37 |
4 |
0 |
72 |
14 |
99 |
0 |
0 |
8 |
8 |
0 |
0 |
0 |
0 |
10 |
1 |
0 |
54 |
22 |
10 |
1 |
95 |
11 |
13 |
154 |
0 |
23 |
1 |
2 |
0 |
9 |
72 |
137 |
7 |
1 |
1 |
4 |
4 |
4 |
5 |
80 |
Chihuahua |
160 |
39 |
455 |
130 |
5 |
1 |
29 |
2 |
0 |
0 |
80 |
226 |
22 |
28 |
107 |
28 |
0 |
34 |
212 |
372 |
47 |
0 |
51 |
11 |
0 |
0 |
0 |
1 |
139 |
5 |
16 |
336 |
551 |
111 |
0 |
701 |
70 |
94 |
1294 |
4 |
199 |
4 |
7 |
4 |
0 |
275 |
289 |
29 |
0 |
16 |
52 |
0 |
71 |
1 |
141 |
Ciudad de México |
52 |
58 |
493 |
478 |
7 |
15 |
83 |
0 |
0 |
0 |
163 |
461 |
140 |
0 |
64 |
158 |
0 |
145 |
262 |
514 |
709 |
8 |
899 |
232 |
63 |
356 |
112 |
1 |
870 |
0 |
0 |
2307 |
1735 |
456 |
30 |
914 |
358 |
397 |
3176 |
0 |
74 |
3 |
26 |
24 |
111 |
339 |
1620 |
76 |
2 |
47 |
233 |
91 |
470 |
2 |
866 |
Durango |
11 |
28 |
235 |
105 |
2 |
1 |
0 |
0 |
0 |
0 |
23 |
54 |
10 |
2 |
35 |
1 |
0 |
36 |
150 |
67 |
9 |
3 |
17 |
1 |
0 |
2 |
0 |
0 |
105 |
2 |
0 |
264 |
141 |
73 |
8 |
296 |
38 |
0 |
571 |
0 |
22 |
68 |
0 |
0 |
2 |
88 |
121 |
14 |
0 |
1 |
14 |
2 |
5 |
2 |
96 |
Guanajuato |
223 |
71 |
1236 |
3 |
4 |
2 |
72 |
2 |
0 |
0 |
0 |
134 |
36 |
14 |
70 |
7 |
0 |
6 |
334 |
323 |
0 |
1 |
28 |
0 |
0 |
0 |
0 |
0 |
382 |
7 |
0 |
1573 |
371 |
134 |
42 |
1017 |
155 |
23 |
1228 |
0 |
174 |
3 |
40 |
0 |
0 |
1772 |
1043 |
33 |
1 |
23 |
47 |
0 |
12 |
0 |
1488 |
Guerrero |
120 |
31 |
218 |
52 |
0 |
0 |
2 |
1 |
0 |
0 |
43 |
30 |
12 |
3 |
30 |
19 |
0 |
0 |
28 |
161 |
2 |
0 |
19 |
1 |
0 |
1 |
0 |
0 |
67 |
2 |
0 |
196 |
75 |
30 |
25 |
199 |
69 |
0 |
295 |
14 |
54 |
15 |
1 |
0 |
0 |
72 |
259 |
21 |
0 |
8 |
25 |
1 |
36 |
0 |
105 |
Hidalgo |
30 |
25 |
300 |
188 |
2 |
1 |
25 |
3 |
0 |
0 |
156 |
74 |
0 |
11 |
42 |
62 |
0 |
34 |
123 |
285 |
7 |
1 |
75 |
15 |
7 |
0 |
0 |
0 |
139 |
7 |
1 |
422 |
111 |
36 |
21 |
217 |
72 |
15 |
664 |
0 |
101 |
0 |
9 |
2 |
1 |
38 |
264 |
26 |
0 |
17 |
21 |
0 |
61 |
55 |
892 |
Jalisco |
151 |
72 |
759 |
227 |
2 |
1 |
0 |
2 |
0 |
0 |
79 |
223 |
34 |
5 |
29 |
1 |
0 |
123 |
257 |
1046 |
165 |
24 |
711 |
70 |
21 |
35 |
47 |
0 |
457 |
14 |
32 |
1064 |
720 |
114 |
48 |
704 |
141 |
0 |
1078 |
0 |
0 |
80 |
7 |
0 |
0 |
102 |
903 |
23 |
0 |
13 |
136 |
3 |
43 |
0 |
1240 |
México |
168 |
130 |
4401 |
1045 |
14 |
8 |
101 |
9 |
0 |
0 |
520 |
539 |
444 |
15 |
182 |
163 |
0 |
6 |
681 |
2979 |
371 |
350 |
2053 |
0 |
91 |
588 |
862 |
1 |
1589 |
13 |
0 |
2136 |
1236 |
305 |
564 |
1339 |
453 |
18 |
2621 |
269 |
299 |
0 |
8 |
13 |
268 |
315 |
0 |
155 |
0 |
23 |
287 |
36 |
321 |
0 |
6615 |
Michoacán de Ocampo |
161 |
65 |
495 |
93 |
2 |
3 |
31 |
1 |
0 |
0 |
28 |
54 |
12 |
2 |
37 |
7 |
0 |
28 |
80 |
373 |
1 |
54 |
19 |
5 |
6 |
14 |
0 |
1 |
66 |
1 |
5 |
267 |
198 |
60 |
7 |
317 |
81 |
22 |
122 |
0 |
26 |
0 |
2 |
0 |
0 |
182 |
410 |
39 |
0 |
1 |
77 |
7 |
24 |
1 |
200 |
Morelos |
66 |
16 |
81 |
234 |
3 |
0 |
44 |
1 |
0 |
0 |
25 |
65 |
4 |
8 |
55 |
1 |
2 |
4 |
116 |
328 |
87 |
8 |
57 |
3 |
2 |
11 |
10 |
3 |
183 |
3 |
0 |
410 |
183 |
61 |
11 |
230 |
138 |
45 |
465 |
0 |
33 |
29 |
3 |
3 |
4 |
70 |
408 |
33 |
0 |
9 |
18 |
0 |
1 |
0 |
132 |
Nayarit |
11 |
19 |
33 |
25 |
0 |
0 |
3 |
0 |
0 |
0 |
4 |
0 |
4 |
0 |
21 |
4 |
0 |
20 |
28 |
36 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
19 |
0 |
0 |
14 |
16 |
5 |
1 |
35 |
9 |
0 |
138 |
0 |
65 |
2 |
2 |
0 |
2 |
28 |
21 |
4 |
0 |
0 |
1 |
1 |
3 |
0 |
80 |
Nuevo León |
127 |
58 |
461 |
179 |
10 |
12 |
29 |
4 |
0 |
12 |
230 |
192 |
80 |
7 |
107 |
60 |
1 |
78 |
453 |
322 |
8 |
16 |
71 |
64 |
13 |
4 |
5 |
0 |
242 |
13 |
8 |
386 |
500 |
88 |
68 |
591 |
108 |
5 |
2282 |
0 |
59 |
669 |
25 |
11 |
0 |
492 |
574 |
50 |
1 |
21 |
126 |
1 |
160 |
1 |
558 |
Oaxaca |
56 |
83 |
273 |
83 |
4 |
0 |
22 |
3 |
0 |
0 |
24 |
38 |
26 |
7 |
34 |
26 |
0 |
1 |
106 |
227 |
7 |
10 |
150 |
20 |
1 |
12 |
4 |
2 |
127 |
7 |
1 |
267 |
142 |
42 |
5 |
238 |
75 |
60 |
657 |
0 |
10 |
25 |
0 |
2 |
44 |
28 |
384 |
26 |
0 |
41 |
26 |
0 |
14 |
24 |
115 |
Puebla |
62 |
33 |
514 |
84 |
3 |
0 |
35 |
2 |
0 |
0 |
23 |
69 |
27 |
9 |
37 |
28 |
0 |
113 |
221 |
579 |
83 |
174 |
352 |
0 |
8 |
48 |
121 |
2 |
404 |
5 |
125 |
422 |
439 |
148 |
8 |
385 |
154 |
20 |
793 |
0 |
27 |
61 |
7 |
3 |
39 |
198 |
518 |
19 |
0 |
8 |
54 |
1 |
229 |
4 |
183 |
Querétaro |
12 |
25 |
372 |
75 |
0 |
1 |
62 |
0 |
0 |
0 |
22 |
74 |
87 |
8 |
37 |
29 |
0 |
2 |
208 |
313 |
58 |
0 |
120 |
8 |
5 |
8 |
34 |
0 |
226 |
11 |
1 |
938 |
319 |
47 |
26 |
145 |
85 |
1 |
472 |
44 |
64 |
19 |
0 |
0 |
40 |
140 |
337 |
24 |
0 |
20 |
14 |
0 |
0 |
0 |
398 |
Quintana Roo |
47 |
78 |
243 |
145 |
3 |
0 |
27 |
0 |
0 |
0 |
95 |
127 |
30 |
2 |
70 |
0 |
0 |
51 |
148 |
258 |
10 |
0 |
107 |
34 |
5 |
5 |
3 |
0 |
122 |
4 |
40 |
516 |
17 |
232 |
9 |
408 |
65 |
32 |
522 |
0 |
55 |
70 |
4 |
1 |
0 |
149 |
284 |
24 |
0 |
40 |
26 |
8 |
66 |
8 |
158 |
San Luis Potosí |
53 |
14 |
373 |
41 |
2 |
1 |
24 |
1 |
0 |
0 |
78 |
56 |
26 |
8 |
65 |
0 |
0 |
12 |
92 |
324 |
44 |
52 |
108 |
8 |
5 |
4 |
0 |
1 |
147 |
28 |
24 |
679 |
226 |
72 |
11 |
550 |
47 |
117 |
788 |
0 |
56 |
9 |
5 |
1 |
0 |
184 |
296 |
47 |
0 |
0 |
18 |
11 |
59 |
0 |
332 |
Sinaloa |
35 |
59 |
329 |
89 |
1 |
0 |
55 |
0 |
0 |
0 |
106 |
46 |
15 |
1 |
33 |
8 |
0 |
7 |
62 |
255 |
4 |
0 |
2 |
0 |
1 |
0 |
2 |
1 |
184 |
1 |
0 |
211 |
69 |
36 |
7 |
238 |
55 |
5 |
628 |
0 |
17 |
17 |
6 |
0 |
1 |
13 |
136 |
8 |
0 |
10 |
17 |
0 |
18 |
0 |
31 |
Sonora |
119 |
38 |
203 |
75 |
5 |
1 |
25 |
0 |
0 |
0 |
59 |
41 |
8 |
3 |
16 |
5 |
0 |
9 |
71 |
170 |
9 |
3 |
20 |
11 |
0 |
0 |
4 |
1 |
51 |
6 |
3 |
279 |
34 |
7 |
6 |
234 |
19 |
17 |
657 |
0 |
158 |
2 |
6 |
0 |
18 |
174 |
164 |
34 |
0 |
0 |
3 |
1 |
4 |
0 |
214 |
Tabasco |
24 |
34 |
321 |
90 |
0 |
0 |
62 |
1 |
0 |
0 |
41 |
15 |
0 |
23 |
29 |
0 |
0 |
66 |
94 |
157 |
3 |
3 |
121 |
0 |
1 |
6 |
0 |
0 |
79 |
28 |
0 |
328 |
132 |
85 |
6 |
194 |
45 |
17 |
654 |
0 |
103 |
2 |
3 |
0 |
0 |
6 |
377 |
28 |
0 |
2 |
15 |
0 |
15 |
0 |
645 |
Tamaulipas |
40 |
72 |
211 |
109 |
0 |
4 |
24 |
3 |
0 |
0 |
45 |
83 |
8 |
3 |
50 |
0 |
0 |
6 |
107 |
156 |
2 |
1 |
11 |
0 |
0 |
0 |
0 |
0 |
124 |
4 |
0 |
264 |
127 |
51 |
11 |
351 |
40 |
5 |
795 |
0 |
154 |
55 |
10 |
0 |
0 |
12 |
167 |
18 |
0 |
11 |
10 |
1 |
34 |
51 |
146 |
Tlaxcala |
13 |
1 |
17 |
8 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
4 |
0 |
0 |
3 |
0 |
0 |
1 |
17 |
151 |
1 |
3 |
9 |
1 |
0 |
2 |
2 |
0 |
23 |
5 |
2 |
21 |
7 |
1 |
0 |
12 |
2 |
0 |
18 |
0 |
2 |
0 |
0 |
1 |
0 |
20 |
2 |
11 |
0 |
0 |
2 |
0 |
0 |
0 |
14 |
Veracruz de Ignacio de la Llave |
62 |
79 |
604 |
174 |
3 |
3 |
18 |
3 |
0 |
0 |
43 |
73 |
0 |
61 |
39 |
0 |
0 |
139 |
237 |
419 |
10 |
8 |
203 |
17 |
0 |
3 |
10 |
2 |
376 |
42 |
8 |
285 |
315 |
96 |
75 |
650 |
213 |
70 |
1088 |
147 |
130 |
142 |
6 |
1 |
1 |
124 |
639 |
50 |
0 |
16 |
36 |
12 |
38 |
1 |
586 |
Yucatán |
2 |
16 |
17 |
3 |
1 |
0 |
10 |
0 |
0 |
0 |
0 |
12 |
1 |
0 |
5 |
0 |
0 |
0 |
19 |
9 |
0 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
6 |
0 |
0 |
1 |
9 |
15 |
0 |
49 |
2 |
10 |
9 |
0 |
4 |
0 |
0 |
1 |
0 |
40 |
77 |
4 |
0 |
0 |
0 |
0 |
3 |
0 |
53 |
Zacatecas |
75 |
37 |
168 |
54 |
0 |
0 |
39 |
0 |
0 |
0 |
70 |
39 |
11 |
1 |
25 |
7 |
0 |
8 |
39 |
151 |
6 |
0 |
1 |
2 |
0 |
0 |
2 |
0 |
32 |
4 |
1 |
337 |
115 |
23 |
37 |
235 |
38 |
11 |
342 |
0 |
63 |
5 |
6 |
3 |
0 |
38 |
140 |
11 |
0 |
11 |
19 |
0 |
26 |
0 |
169 |
Lugar a nivel nacional de los municipios Queretanos en incidencia delictiva
Top 50 municipios en el año
pop2020<-subset(pop,pop$ANO==losAnos[length(losAnos)])
delitos2020<-subset(delitos2,delitos2$Ano==losAnos[length(losAnos)])
popMun<-aggregate(pop2020$POB~pop2020$MUN,pop2020,sum)
delMun<-aggregate(delitos2020$value~delitos2020$Cve..Municipio,delitos2020,sum)
delMun$estado<-NA
delMun$municipio<-NA
for (i in 1:nrow(delMun)) {
delMun$estado[i]<-unique(delitos2020$Entidad[delitos2020$Cve..Municipio==delMun$`delitos2020$Cve..Municipio`[i]])
delMun$municipio[i]<-unique(delitos2020$Municipio[delitos2020$Cve..Municipio==delMun$`delitos2020$Cve..Municipio`[i]])
}
delMun$poblacion<-NA
for (i in 1:nrow(delMun)) {
delMun$poblacion[delMun$municipio==popMun$`pop2020$MUN`[i]]<-popMun$`pop2020$POB`[i]
}
delMun$incidencia<-NA
delMun$incidencia<-round(delMun$`delitos2020$value`/delMun$poblacion*100000,2)
delMun<-delMun[order(delMun$incidencia,decreasing = TRUE),]
delMun$posicion<-NA
for (i in 1:nrow(delMun)) {
delMun$posicion[i]<-i
}
names(delMun)[c(1,2,6,7)]<-c("Clave del municipio","Número de carpetas de investigación", "Incidencia por cada 100 mil habitantes","Posición a nivel nacional")
kable(head(delMun[,c(7,3,4,2,5,6)],50),caption = "Top 50 en el año")
Top 50 en el año
1829 |
1 |
Quintana Roo |
Tulum |
1077 |
38476 |
2799.15 |
76 |
2 |
Colima |
Colima |
4872 |
174249 |
2796.00 |
506 |
3 |
Hidalgo |
Pachuca de Soto |
6496 |
283561 |
2290.87 |
739 |
4 |
México |
Polotitlán |
345 |
15415 |
2238.08 |
289 |
5 |
Ciudad de México |
Cuauhtémoc |
17496 |
783824 |
2232.13 |
81 |
6 |
Colima |
Manzanillo |
4393 |
210031 |
2091.60 |
496 |
7 |
Hidalgo |
Mineral del Chico |
202 |
9950 |
2030.15 |
16 |
8 |
Baja California |
Playas de Rosarito |
2212 |
111412 |
1985.42 |
1080 |
9 |
Oaxaca |
Oaxaca de Juárez |
4790 |
259162 |
1848.26 |
778 |
10 |
México |
Valle de Bravo |
1310 |
71287 |
1837.64 |
480 |
11 |
Hidalgo |
Epazoyucan |
299 |
16468 |
1815.64 |
774 |
12 |
México |
Toluca |
17393 |
968840 |
1795.24 |
972 |
13 |
Nuevo León |
El Carmen |
882 |
49869 |
1768.63 |
913 |
14 |
Morelos |
Cuernavaca |
7143 |
406087 |
1758.98 |
290 |
15 |
Ciudad de México |
Miguel Hidalgo |
6661 |
381196 |
1747.40 |
1828 |
16 |
Quintana Roo |
Solidaridad |
4335 |
251189 |
1725.79 |
2477 |
17 |
Zacatecas |
Zacatecas |
2715 |
157320 |
1725.78 |
729 |
18 |
México |
Nopaltepec |
167 |
9909 |
1685.34 |
38 |
19 |
Coahuila de Zaragoza |
Acuña |
2785 |
166109 |
1676.61 |
346 |
20 |
Guanajuato |
Guanajuato |
3352 |
201601 |
1662.69 |
32 |
21 |
Campeche |
Escárcega |
1080 |
65274 |
1654.56 |
1815 |
22 |
Querétaro |
Querétaro |
16566 |
1007923 |
1643.58 |
25 |
23 |
Campeche |
Campeche |
5337 |
328054 |
1626.87 |
789 |
24 |
México |
Cuautitlán Izcalli |
9517 |
586273 |
1623.31 |
232 |
25 |
Chihuahua |
Santa Isabel |
71 |
4392 |
1616.58 |
1859 |
26 |
San Luis Potosí |
San Luis Potosí |
14115 |
881143 |
1601.90 |
767 |
27 |
México |
Texcoco |
4267 |
266768 |
1599.52 |
13 |
28 |
Baja California |
Mexicali |
17793 |
1123056 |
1584.34 |
722 |
29 |
México |
Metepec |
4146 |
263100 |
1575.83 |
788 |
30 |
México |
Zumpango |
3530 |
224322 |
1573.63 |
693 |
31 |
México |
Chalco |
6474 |
412810 |
1568.28 |
14 |
32 |
Baja California |
Tecate |
1805 |
117180 |
1540.37 |
84 |
33 |
Colima |
Villa de Álvarez |
2394 |
155697 |
1537.60 |
497 |
34 |
Hidalgo |
Mineral del Monte |
247 |
16104 |
1533.78 |
61 |
35 |
Coahuila de Zaragoza |
Piedras Negras |
2760 |
181109 |
1523.94 |
915 |
36 |
Morelos |
Huitzilac |
315 |
20805 |
1514.06 |
744 |
37 |
México |
San Mateo Atenco |
1242 |
82161 |
1511.67 |
974 |
38 |
Nuevo León |
Ciénega de Flores |
801 |
52995 |
1511.46 |
912 |
39 |
Morelos |
Cuautla |
3240 |
215291 |
1504.94 |
844 |
40 |
Michoacán de Ocampo |
Marcos Castellanos |
220 |
14775 |
1489.00 |
1 |
41 |
Aguascalientes |
Aguascalientes |
14633 |
986919 |
1482.70 |
793 |
42 |
México |
Tonanitla |
162 |
11060 |
1464.74 |
692 |
43 |
México |
Cuautitlán |
2622 |
180098 |
1455.87 |
1414 |
44 |
Oaxaca |
Santa María Colotepec |
371 |
25491 |
1455.42 |
535 |
45 |
Hidalgo |
Tulancingo de Bravo |
2507 |
173360 |
1446.12 |
276 |
46 |
Ciudad de México |
Azcapotzalco |
5843 |
406387 |
1437.79 |
78 |
47 |
Colima |
Coquimatlán |
326 |
22754 |
1432.72 |
527 |
48 |
Hidalgo |
Tizayuca |
2039 |
142743 |
1428.44 |
747 |
49 |
México |
Soyaniquilpan de Juárez |
210 |
14715 |
1427.12 |
677 |
50 |
México |
Amecameca |
789 |
55411 |
1423.91 |
Top 50 municipios en el mes
pop2020<-subset(pop,pop$ANO==losAnos[length(losAnos)])
delitos2020Mes<-subset(delitos2,delitos2$Ano==losAnos[length(losAnos)] & delitos2$meses== esteMes)
popMun<-aggregate(pop2020$POB~pop2020$MUN,pop2020,sum)
delMunMes<-aggregate(delitos2020Mes$value~delitos2020Mes$Cve..Municipio,delitos2020Mes,sum)
delMunMes$estado<-NA
delMunMes$municipio<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$estado[i]<-unique(delitos2020Mes$Entidad[delitos2020Mes$Cve..Municipio==delMunMes$`delitos2020Mes$Cve..Municipio`[i]])
delMunMes$municipio[i]<-unique(delitos2020Mes$Municipio[delitos2020Mes$Cve..Municipio==delMunMes$`delitos2020Mes$Cve..Municipio`[i]])
}
delMunMes$poblacion<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$poblacion[delMunMes$municipio==popMun$`pop2020$MUN`[i]]<-popMun$`pop2020$POB`[i]
}
delMunMes$incidencia<-NA
delMunMes$incidencia<-round(delMunMes$`delitos2020Mes$value`/delMunMes$poblacion*100000,2)
delMunMes<-delMunMes[order(delMunMes$incidencia,decreasing = TRUE),]
delMunMes$posicion<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$posicion[i]<-i
}
names(delMunMes)[c(1,2,6,7)]<-c("Clave del municipio","Número de carpetas de investigación", "Incidencia por cada 100 mil habitantes","Posición a nivel nacional")
kable(head(delMunMes[,c(7,3,4,2,5,6)],50),caption = "Top 50 en el mes")
Top 50 en el mes
1402 |
1 |
Oaxaca |
Santa Inés Yatzeche |
6 |
950 |
631.58 |
1829 |
2 |
Quintana Roo |
Tulum |
195 |
38476 |
506.81 |
76 |
3 |
Colima |
Colima |
879 |
174249 |
504.45 |
739 |
4 |
México |
Polotitlán |
63 |
15415 |
408.69 |
506 |
5 |
Hidalgo |
Pachuca de Soto |
1156 |
283561 |
407.67 |
496 |
6 |
Hidalgo |
Mineral del Chico |
39 |
9950 |
391.96 |
289 |
7 |
Ciudad de México |
Cuauhtémoc |
3035 |
783824 |
387.20 |
972 |
8 |
Nuevo León |
El Carmen |
193 |
49869 |
387.01 |
480 |
9 |
Hidalgo |
Epazoyucan |
63 |
16468 |
382.56 |
60 |
10 |
Coahuila de Zaragoza |
Parras |
186 |
49487 |
375.86 |
38 |
11 |
Coahuila de Zaragoza |
Acuña |
623 |
166109 |
375.05 |
1432 |
12 |
Oaxaca |
Santa María Jaltianguis |
2 |
541 |
369.69 |
16 |
13 |
Baja California |
Playas de Rosarito |
400 |
111412 |
359.03 |
81 |
14 |
Colima |
Manzanillo |
731 |
210031 |
348.04 |
995 |
15 |
Nuevo León |
Linares |
312 |
90832 |
343.49 |
778 |
16 |
México |
Valle de Bravo |
242 |
71287 |
339.47 |
985 |
17 |
Nuevo León |
General Treviño |
4 |
1209 |
330.85 |
1680 |
18 |
Puebla |
Mazapiltepec de Juárez |
10 |
3065 |
326.26 |
14 |
19 |
Baja California |
Tecate |
374 |
117180 |
319.17 |
915 |
20 |
Morelos |
Huitzilac |
66 |
20805 |
317.23 |
737 |
21 |
México |
Papalotla |
14 |
4427 |
316.24 |
61 |
22 |
Coahuila de Zaragoza |
Piedras Negras |
572 |
181109 |
315.83 |
913 |
23 |
Morelos |
Cuernavaca |
1269 |
406087 |
312.49 |
1205 |
24 |
Oaxaca |
San Juan Chilateca |
5 |
1610 |
310.56 |
774 |
25 |
México |
Toluca |
2949 |
968840 |
304.38 |
1859 |
26 |
San Luis Potosí |
San Luis Potosí |
2672 |
881143 |
303.24 |
290 |
27 |
Ciudad de México |
Miguel Hidalgo |
1153 |
381196 |
302.47 |
346 |
28 |
Guanajuato |
Guanajuato |
607 |
201601 |
301.09 |
2477 |
29 |
Zacatecas |
Zacatecas |
471 |
157320 |
299.39 |
2432 |
30 |
Zacatecas |
Trinidad García de la Cadena |
9 |
3042 |
295.86 |
25 |
31 |
Campeche |
Campeche |
960 |
328054 |
292.63 |
1080 |
32 |
Oaxaca |
Oaxaca de Juárez |
757 |
259162 |
292.10 |
1000 |
33 |
Nuevo León |
Montemorelos |
202 |
69413 |
291.01 |
13 |
34 |
Baja California |
Mexicali |
3256 |
1123056 |
289.92 |
789 |
35 |
México |
Cuautitlán Izcalli |
1682 |
586273 |
286.90 |
1815 |
36 |
Querétaro |
Querétaro |
2889 |
1007923 |
286.63 |
1828 |
37 |
Quintana Roo |
Solidaridad |
719 |
251189 |
286.24 |
767 |
38 |
México |
Texcoco |
762 |
266768 |
285.64 |
84 |
39 |
Colima |
Villa de Álvarez |
444 |
155697 |
285.17 |
1011 |
40 |
Nuevo León |
Santiago |
136 |
48083 |
282.84 |
1007 |
41 |
Nuevo León |
Salinas Victoria |
180 |
64394 |
279.53 |
497 |
42 |
Hidalgo |
Mineral del Monte |
45 |
16104 |
279.43 |
722 |
43 |
México |
Metepec |
723 |
263100 |
274.80 |
747 |
44 |
México |
Soyaniquilpan de Juárez |
40 |
14715 |
271.83 |
677 |
45 |
México |
Amecameca |
148 |
55411 |
267.09 |
1 |
46 |
Aguascalientes |
Aguascalientes |
2621 |
986919 |
265.57 |
1004 |
47 |
Nuevo León |
Los Ramones |
14 |
5274 |
265.45 |
527 |
48 |
Hidalgo |
Tizayuca |
372 |
142743 |
260.61 |
793 |
49 |
México |
Tonanitla |
28 |
11060 |
253.16 |
729 |
50 |
México |
Nopaltepec |
25 |
9909 |
252.30 |
Posición de los municipios de Queretaro en el año
kable(delMun[delMun$estado=="Querétaro",c(7,3,4,2,5,6)])
1815 |
22 |
Querétaro |
Querétaro |
16566 |
1007923 |
1643.58 |
1817 |
139 |
Querétaro |
San Juan del Río |
3518 |
327013 |
1075.80 |
1807 |
170 |
Querétaro |
Corregidora |
2187 |
218580 |
1000.55 |
1810 |
198 |
Querétaro |
Jalpan de Serra |
291 |
30545 |
952.69 |
1812 |
224 |
Querétaro |
El Marqués |
1711 |
187408 |
912.98 |
1808 |
234 |
Querétaro |
Ezequiel Montes |
425 |
47327 |
898.01 |
1818 |
283 |
Querétaro |
Tequisquiapan |
675 |
81508 |
828.14 |
1813 |
395 |
Querétaro |
Pedro Escobedo |
537 |
78781 |
681.64 |
1806 |
435 |
Querétaro |
Colón |
457 |
71101 |
642.75 |
1809 |
454 |
Querétaro |
Huimilpan |
274 |
43531 |
629.44 |
1802 |
481 |
Querétaro |
Amealco de Bonfil |
430 |
70139 |
613.07 |
1805 |
491 |
Querétaro |
Cadereyta de Montes |
479 |
79287 |
604.13 |
1816 |
625 |
Querétaro |
San Joaquín |
54 |
10629 |
508.04 |
1804 |
642 |
Querétaro |
Arroyo Seco |
76 |
15269 |
497.74 |
1803 |
732 |
Querétaro |
Pinal de Amoles |
127 |
28762 |
441.55 |
1819 |
827 |
Querétaro |
Tolimán |
173 |
43584 |
396.93 |
1811 |
1057 |
Querétaro |
Landa de Matamoros |
63 |
20733 |
303.86 |
1814 |
1420 |
Querétaro |
Peñamiller |
46 |
22702 |
202.63 |
1820 |
2471 |
Querétaro |
No Especificado |
54 |
NA |
NA |
Posición de los municipios de Queretaro en el mes
kable(delMunMes[delMunMes$estado=="Querétaro",c(7,3,4,2,5,6)])
1815 |
36 |
Querétaro |
Querétaro |
2889 |
1007923 |
286.63 |
1817 |
166 |
Querétaro |
San Juan del Río |
614 |
327013 |
187.76 |
1807 |
231 |
Querétaro |
Corregidora |
359 |
218580 |
164.24 |
1818 |
242 |
Querétaro |
Tequisquiapan |
132 |
81508 |
161.95 |
1808 |
248 |
Querétaro |
Ezequiel Montes |
76 |
47327 |
160.58 |
1812 |
266 |
Querétaro |
El Marqués |
290 |
187408 |
154.74 |
1809 |
358 |
Querétaro |
Huimilpan |
57 |
43531 |
130.94 |
1813 |
382 |
Querétaro |
Pedro Escobedo |
100 |
78781 |
126.93 |
1806 |
384 |
Querétaro |
Colón |
90 |
71101 |
126.58 |
1804 |
399 |
Querétaro |
Arroyo Seco |
19 |
15269 |
124.44 |
1805 |
412 |
Querétaro |
Cadereyta de Montes |
97 |
79287 |
122.34 |
1810 |
421 |
Querétaro |
Jalpan de Serra |
37 |
30545 |
121.13 |
1802 |
489 |
Querétaro |
Amealco de Bonfil |
76 |
70139 |
108.36 |
1816 |
789 |
Querétaro |
San Joaquín |
8 |
10629 |
75.27 |
1811 |
821 |
Querétaro |
Landa de Matamoros |
15 |
20733 |
72.35 |
1819 |
834 |
Querétaro |
Tolimán |
31 |
43584 |
71.13 |
1803 |
852 |
Querétaro |
Pinal de Amoles |
20 |
28762 |
69.54 |
1814 |
1341 |
Querétaro |
Peñamiller |
8 |
22702 |
35.24 |
1820 |
2471 |
Querétaro |
No Especificado |
13 |
NA |
NA |
Delitos en Querétaro
delitosQRO2020<-subset(delitos2, delitos2$Clave_Ent==22)
delitosQRO2020$periodo<-NA
delitosQRO2020$mes<-NA
m<-unique(delitosQRO2020$meses)
for (i in m) {
delitosQRO2020$mes[delitosQRO2020$meses==i]<-switch (i,"Enero"="01","Febrero"="02","Marzo"="03", "Abril"="04","Mayo"="05","Junio"="06","Julio"="07","Agosto"="08","Septiembre"="09","Octubre"="10","Noviembre"="11", "Diciembre"="12")
}
delitosQRO2020$periodo<-paste0(delitosQRO2020$Ano,delitosQRO2020$mes)
catalogoDelitos<-as.data.frame(sort(unique(delitosQRO2020$Subtipo.de.delito)))
losMeses2020<-sort(unique(delitosQRO2020$periodo))
for (i in 1:length(losMeses2020)){
a<-subset(delitosQRO2020, delitosQRO2020$periodo==losMeses2020[i])
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
catalogoDelitos<-cbind(catalogoDelitos,b)
}
names(catalogoDelitos)<-c("Delito", losMeses2020)
stop1<-0
dondeBuscar<-colSums(catalogoDelitos[2:ncol(catalogoDelitos)])
for (i in 1:length(dondeBuscar)) {
if(dondeBuscar[i]==0){
stop1<-i;
break;
}
}
if(stop1==0){stop1=ncol(catalogoDelitos)}
stop2=stop1-12
#Superior al mismo périodo del año anterior
comparaAniAnterior<-catalogoDelitos[,c(1,stop2,stop1)]
comparaAniAnteriorTasa<-comparaAniAnterior
comparaAniAnteriorTasa[2]<-round(comparaAniAnteriorTasa[2]/ent$year2019[22]*1000,3)
comparaAniAnteriorTasa[3]<-round(comparaAniAnteriorTasa[3]/ent$year2020[22]*1000,3)
names(comparaAniAnteriorTasa)<-c("Delito", "Tasa 2019", "Tasa 2020")
comparaAniAnteriorTasa$cambio<-NA
comparaAniAnteriorTasa$cambio<-round((comparaAniAnteriorTasa[3]-comparaAniAnteriorTasa[2])/comparaAniAnteriorTasa[2],2)
aumentoContraUnAno<-comparaAniAnteriorTasa$Delito[comparaAniAnteriorTasa$cambio>0 & !is.na(comparaAniAnteriorTasa$cambio)]
maximoAbsoluto<-apply(X = catalogoDelitos[,2:stop1], MARGIN = 1,max)
estePeriodo<-catalogoDelitos[,stop1]
DelitosEnMaximoAbsoluto<-catalogoDelitos[estePeriodo!=0 & estePeriodo>=maximoAbsoluto,c(1, stop1)]
names(DelitosEnMaximoAbsoluto)<-c(paste0("Delitos que alcanzan su máximo histórico en ",esteMes ,"(Números absolutos)"),"Incidentes")
Delitos que aumentaron entre Mayo y Junio
cambioMes<-cbind(catalogoDelitos[,1], catalogoDelitos[,(stop1-1):stop1])
cambioMes$tasadeCambio<-NA
cambioMes$tasadeCambio<-round((cambioMes[,3]-cambioMes[,2])/cambioMes[,2]*100,2)
cambioMes<-cambioMes[order(cambioMes$tasadeCambio,decreasing = TRUE),]
cambioMes1<-cambioMes[!is.infinite(cambioMes[,4]) & !is.nan(cambioMes[,4]), ]
cambioMes1<-cambioMes1[order(cambioMes1[3], decreasing = TRUE),]
## Warning in xtfrm.data.frame(x): cannot xtfrm data frames
names(cambioMes1)<-c("Delito", paste0("Carpetas en ", anterior), paste0("Carpetas en ", esteMes),"Tasa de cambio (%)")
kable(cambioMes1)
34 |
Otros robos |
917 |
938 |
2.29 |
55 |
Violencia familiar |
527 |
472 |
-10.44 |
30 |
Otros delitos del Fuero Común |
365 |
398 |
9.04 |
25 |
Lesiones dolosas |
442 |
372 |
-15.84 |
6 |
Amenazas |
433 |
337 |
-22.17 |
18 |
Fraude |
310 |
319 |
2.90 |
45 |
Robo de vehículo automotor |
350 |
313 |
-10.57 |
38 |
Robo a negocio |
186 |
226 |
21.51 |
36 |
Robo a casa habitación |
212 |
208 |
-1.89 |
9 |
Daño a la propiedad |
160 |
145 |
-9.38 |
26 |
Narcomenudeo |
123 |
140 |
13.82 |
40 |
Robo a transeúnte en vía pública |
130 |
120 |
-7.69 |
4 |
Acoso sexual |
76 |
87 |
14.47 |
11 |
Despojo |
78 |
85 |
8.97 |
24 |
Lesiones culposas |
111 |
75 |
-32.43 |
3 |
Abuso sexual |
67 |
74 |
10.45 |
23 |
Incumplimiento de obligaciones de asistencia familiar |
60 |
64 |
6.67 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
91 |
62 |
-31.87 |
42 |
Robo de autopartes |
36 |
58 |
61.11 |
2 |
Abuso de confianza |
61 |
47 |
-22.95 |
54 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
77 |
44 |
-42.86 |
29 |
Otros delitos contra la sociedad |
27 |
40 |
48.15 |
53 |
Violación simple |
37 |
37 |
0.00 |
46 |
Robo en transporte individual |
38 |
34 |
-10.53 |
52 |
Violación equiparada |
28 |
29 |
3.57 |
14 |
Extorsión |
15 |
26 |
73.33 |
19 |
Homicidio culposo |
29 |
25 |
-13.79 |
5 |
Allanamiento de morada |
34 |
24 |
-29.41 |
31 |
Otros delitos que atentan contra la libertad personal |
21 |
22 |
4.76 |
15 |
Falsedad |
17 |
20 |
17.65 |
28 |
Otros delitos contra la familia |
24 |
19 |
-20.83 |
16 |
Falsificación |
19 |
14 |
-26.32 |
20 |
Homicidio doloso |
15 |
12 |
-20.00 |
43 |
Robo de ganado |
10 |
11 |
10.00 |
21 |
Hostigamiento sexual |
4 |
8 |
100.00 |
47 |
Robo en transporte público colectivo |
8 |
8 |
0.00 |
39 |
Robo a transeúnte en espacio abierto al público |
9 |
8 |
-11.11 |
48 |
Robo en transporte público individual |
5 |
5 |
0.00 |
32 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
3 |
2 |
-33.33 |
27 |
Otros delitos contra el patrimonio |
2 |
1 |
-50.00 |
1 |
Aborto |
6 |
1 |
-83.33 |
17 |
Feminicidio |
2 |
0 |
-100.00 |
Querétaro: Los delitos que han alcanzado su máximo histórico (en números absolutos) en este mes
kable(DelitosEnMaximoAbsoluto)
4 |
Acoso sexual |
87 |
15 |
Falsedad |
20 |
21 |
Hostigamiento sexual |
8 |
31 |
Otros delitos que atentan contra la libertad personal |
22 |
Querétaro: Los delitos más frecuentes en Junio
elMes<-catalogoDelitos[,c(1,stop1)]
elMes<-elMes[order(elMes[2], decreasing =TRUE),]
## Warning in xtfrm.data.frame(x): cannot xtfrm data frames
names(elMes)<-c(paste0("Delitos más frecuentes en ",esteMes),esteMes)
kable(elMes)
34 |
Otros robos |
938 |
55 |
Violencia familiar |
472 |
30 |
Otros delitos del Fuero Común |
398 |
25 |
Lesiones dolosas |
372 |
6 |
Amenazas |
337 |
18 |
Fraude |
319 |
45 |
Robo de vehículo automotor |
313 |
38 |
Robo a negocio |
226 |
36 |
Robo a casa habitación |
208 |
9 |
Daño a la propiedad |
145 |
26 |
Narcomenudeo |
140 |
40 |
Robo a transeúnte en vía pública |
120 |
4 |
Acoso sexual |
87 |
11 |
Despojo |
85 |
24 |
Lesiones culposas |
75 |
3 |
Abuso sexual |
74 |
23 |
Incumplimiento de obligaciones de asistencia familiar |
64 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
62 |
42 |
Robo de autopartes |
58 |
2 |
Abuso de confianza |
47 |
54 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
44 |
29 |
Otros delitos contra la sociedad |
40 |
53 |
Violación simple |
37 |
46 |
Robo en transporte individual |
34 |
52 |
Violación equiparada |
29 |
14 |
Extorsión |
26 |
19 |
Homicidio culposo |
25 |
5 |
Allanamiento de morada |
24 |
31 |
Otros delitos que atentan contra la libertad personal |
22 |
15 |
Falsedad |
20 |
28 |
Otros delitos contra la familia |
19 |
16 |
Falsificación |
14 |
20 |
Homicidio doloso |
12 |
43 |
Robo de ganado |
11 |
21 |
Hostigamiento sexual |
8 |
39 |
Robo a transeúnte en espacio abierto al público |
8 |
47 |
Robo en transporte público colectivo |
8 |
48 |
Robo en transporte público individual |
5 |
32 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
2 |
1 |
Aborto |
1 |
27 |
Otros delitos contra el patrimonio |
1 |
44 |
Robo de maquinaria |
1 |
7 |
Contra el medio ambiente |
0 |
8 |
Corrupción de menores |
0 |
10 |
Delitos cometidos por servidores públicos |
0 |
12 |
Electorales |
0 |
13 |
Evasión de presos |
0 |
17 |
Feminicidio |
0 |
22 |
Incesto |
0 |
35 |
Rapto |
0 |
37 |
Robo a institución bancaria |
0 |
41 |
Robo a transportista |
0 |
49 |
Secuestro |
0 |
50 |
Tráfico de menores |
0 |
51 |
Trata de personas |
0 |
Serie Mensual por delito en Querétaro
kable(catalogoDelitos)
Aborto |
0 |
2 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2 |
0 |
1 |
1 |
0 |
0 |
0 |
2 |
1 |
0 |
1 |
0 |
0 |
4 |
1 |
1 |
0 |
2 |
3 |
1 |
1 |
0 |
1 |
0 |
0 |
2 |
4 |
0 |
3 |
1 |
0 |
2 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
3 |
2 |
3 |
1 |
3 |
4 |
0 |
3 |
3 |
1 |
3 |
0 |
5 |
4 |
0 |
3 |
3 |
3 |
3 |
5 |
2 |
4 |
3 |
1 |
4 |
2 |
3 |
2 |
3 |
5 |
2 |
6 |
5 |
1 |
6 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Abuso de confianza |
36 |
23 |
30 |
33 |
40 |
39 |
60 |
32 |
39 |
41 |
54 |
32 |
44 |
31 |
52 |
42 |
54 |
54 |
44 |
35 |
67 |
52 |
39 |
50 |
46 |
59 |
49 |
54 |
60 |
44 |
60 |
61 |
64 |
46 |
48 |
44 |
42 |
53 |
55 |
64 |
58 |
45 |
68 |
55 |
44 |
49 |
46 |
43 |
53 |
64 |
55 |
44 |
53 |
48 |
75 |
59 |
61 |
69 |
47 |
53 |
53 |
48 |
55 |
38 |
26 |
33 |
54 |
50 |
66 |
53 |
50 |
61 |
66 |
76 |
76 |
57 |
48 |
85 |
61 |
40 |
57 |
54 |
41 |
54 |
31 |
51 |
58 |
68 |
61 |
47 |
0 |
0 |
0 |
0 |
0 |
0 |
Abuso sexual |
20 |
13 |
14 |
25 |
25 |
17 |
21 |
23 |
20 |
29 |
26 |
17 |
22 |
14 |
16 |
20 |
28 |
24 |
31 |
28 |
34 |
25 |
30 |
22 |
27 |
25 |
34 |
27 |
43 |
35 |
30 |
23 |
27 |
32 |
32 |
23 |
19 |
29 |
35 |
43 |
31 |
39 |
46 |
27 |
37 |
34 |
39 |
34 |
29 |
47 |
48 |
54 |
59 |
44 |
50 |
57 |
34 |
39 |
39 |
40 |
36 |
39 |
69 |
22 |
47 |
46 |
56 |
41 |
51 |
54 |
48 |
42 |
42 |
39 |
69 |
68 |
48 |
53 |
77 |
68 |
51 |
61 |
54 |
48 |
61 |
37 |
72 |
76 |
67 |
74 |
0 |
0 |
0 |
0 |
0 |
0 |
Acoso sexual |
5 |
1 |
0 |
0 |
3 |
3 |
0 |
4 |
1 |
2 |
2 |
2 |
1 |
4 |
3 |
6 |
4 |
5 |
6 |
2 |
2 |
6 |
0 |
1 |
1 |
4 |
1 |
2 |
7 |
3 |
3 |
9 |
4 |
4 |
4 |
2 |
2 |
16 |
9 |
18 |
9 |
10 |
13 |
13 |
11 |
12 |
14 |
1 |
11 |
14 |
14 |
19 |
17 |
19 |
22 |
37 |
31 |
33 |
44 |
33 |
34 |
55 |
52 |
54 |
42 |
50 |
48 |
57 |
57 |
60 |
42 |
48 |
39 |
41 |
76 |
65 |
64 |
56 |
71 |
55 |
57 |
59 |
54 |
54 |
44 |
57 |
78 |
68 |
76 |
87 |
0 |
0 |
0 |
0 |
0 |
0 |
Allanamiento de morada |
10 |
10 |
9 |
5 |
12 |
6 |
5 |
4 |
5 |
9 |
16 |
10 |
10 |
10 |
10 |
12 |
9 |
11 |
15 |
16 |
13 |
20 |
11 |
12 |
11 |
17 |
17 |
11 |
17 |
15 |
12 |
13 |
15 |
18 |
12 |
14 |
15 |
10 |
16 |
18 |
27 |
26 |
31 |
13 |
23 |
14 |
8 |
31 |
26 |
20 |
26 |
25 |
25 |
20 |
39 |
32 |
17 |
28 |
30 |
27 |
23 |
27 |
22 |
24 |
27 |
21 |
30 |
28 |
22 |
23 |
25 |
24 |
17 |
25 |
22 |
25 |
19 |
24 |
26 |
20 |
26 |
23 |
23 |
24 |
18 |
23 |
23 |
41 |
34 |
24 |
0 |
0 |
0 |
0 |
0 |
0 |
Amenazas |
78 |
81 |
95 |
94 |
88 |
85 |
103 |
98 |
95 |
102 |
103 |
86 |
71 |
67 |
89 |
106 |
113 |
189 |
187 |
223 |
159 |
184 |
148 |
174 |
169 |
186 |
176 |
189 |
294 |
231 |
208 |
281 |
241 |
245 |
230 |
215 |
233 |
210 |
287 |
263 |
315 |
276 |
315 |
297 |
273 |
341 |
278 |
273 |
319 |
307 |
333 |
376 |
417 |
344 |
399 |
391 |
308 |
367 |
353 |
328 |
342 |
390 |
380 |
251 |
201 |
278 |
322 |
350 |
333 |
324 |
271 |
281 |
296 |
308 |
407 |
429 |
374 |
365 |
352 |
311 |
316 |
254 |
271 |
310 |
301 |
261 |
371 |
357 |
433 |
337 |
0 |
0 |
0 |
0 |
0 |
0 |
Contra el medio ambiente |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Corrupción de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Daño a la propiedad |
167 |
153 |
186 |
178 |
172 |
168 |
158 |
132 |
165 |
143 |
186 |
174 |
155 |
183 |
159 |
185 |
213 |
391 |
430 |
461 |
477 |
402 |
394 |
412 |
407 |
387 |
432 |
395 |
477 |
447 |
385 |
455 |
412 |
522 |
437 |
444 |
478 |
395 |
433 |
426 |
436 |
510 |
487 |
462 |
473 |
465 |
430 |
426 |
451 |
436 |
484 |
481 |
506 |
452 |
272 |
116 |
120 |
112 |
102 |
128 |
113 |
128 |
107 |
115 |
97 |
108 |
106 |
131 |
134 |
119 |
108 |
94 |
116 |
125 |
135 |
140 |
139 |
144 |
134 |
145 |
87 |
134 |
98 |
129 |
100 |
106 |
137 |
137 |
160 |
145 |
0 |
0 |
0 |
0 |
0 |
0 |
Delitos cometidos por servidores públicos |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Despojo |
43 |
40 |
45 |
51 |
35 |
33 |
48 |
38 |
34 |
38 |
28 |
50 |
41 |
47 |
47 |
38 |
36 |
46 |
38 |
49 |
41 |
46 |
37 |
45 |
36 |
48 |
51 |
55 |
56 |
64 |
51 |
61 |
51 |
41 |
54 |
29 |
45 |
57 |
65 |
47 |
68 |
60 |
60 |
72 |
61 |
78 |
58 |
49 |
69 |
71 |
83 |
72 |
73 |
73 |
81 |
66 |
65 |
69 |
66 |
62 |
67 |
77 |
58 |
45 |
53 |
71 |
104 |
86 |
70 |
90 |
62 |
78 |
76 |
86 |
77 |
91 |
81 |
87 |
76 |
63 |
69 |
71 |
62 |
73 |
54 |
70 |
77 |
73 |
78 |
85 |
0 |
0 |
0 |
0 |
0 |
0 |
Electorales |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
3 |
0 |
0 |
5 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
3 |
26 |
12 |
2 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
3 |
0 |
0 |
3 |
3 |
2 |
0 |
0 |
2 |
0 |
2 |
2 |
2 |
5 |
18 |
26 |
2 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Evasión de presos |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Extorsión |
2 |
0 |
1 |
0 |
0 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
4 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
3 |
5 |
4 |
5 |
7 |
13 |
4 |
13 |
4 |
13 |
7 |
12 |
12 |
10 |
14 |
33 |
20 |
13 |
23 |
19 |
38 |
35 |
14 |
20 |
16 |
14 |
26 |
16 |
25 |
15 |
21 |
18 |
18 |
20 |
22 |
25 |
17 |
19 |
11 |
18 |
20 |
27 |
24 |
18 |
32 |
25 |
20 |
26 |
22 |
14 |
29 |
19 |
18 |
19 |
15 |
26 |
0 |
0 |
0 |
0 |
0 |
0 |
Falsedad |
1 |
2 |
2 |
4 |
5 |
5 |
3 |
2 |
5 |
2 |
4 |
2 |
6 |
3 |
18 |
8 |
9 |
8 |
2 |
10 |
11 |
7 |
6 |
7 |
4 |
4 |
4 |
10 |
14 |
7 |
7 |
6 |
6 |
7 |
3 |
7 |
4 |
6 |
6 |
11 |
13 |
6 |
5 |
12 |
8 |
9 |
4 |
4 |
7 |
6 |
8 |
12 |
4 |
11 |
6 |
11 |
13 |
8 |
8 |
7 |
9 |
13 |
9 |
3 |
6 |
2 |
8 |
4 |
5 |
14 |
10 |
5 |
11 |
10 |
11 |
17 |
9 |
11 |
9 |
16 |
13 |
12 |
16 |
9 |
14 |
14 |
14 |
15 |
17 |
20 |
0 |
0 |
0 |
0 |
0 |
0 |
Falsificación |
65 |
40 |
48 |
40 |
59 |
63 |
47 |
44 |
61 |
56 |
63 |
56 |
48 |
40 |
42 |
45 |
52 |
45 |
64 |
52 |
33 |
44 |
47 |
44 |
33 |
38 |
48 |
28 |
43 |
34 |
40 |
25 |
30 |
51 |
33 |
35 |
34 |
35 |
27 |
56 |
56 |
56 |
57 |
52 |
60 |
70 |
38 |
39 |
65 |
42 |
61 |
73 |
63 |
58 |
73 |
49 |
57 |
68 |
46 |
40 |
47 |
36 |
29 |
11 |
12 |
20 |
18 |
33 |
21 |
32 |
22 |
19 |
11 |
11 |
21 |
23 |
11 |
20 |
8 |
22 |
19 |
28 |
18 |
21 |
18 |
18 |
19 |
19 |
19 |
14 |
0 |
0 |
0 |
0 |
0 |
0 |
Feminicidio |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
0 |
2 |
1 |
1 |
0 |
0 |
1 |
2 |
1 |
2 |
0 |
2 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
2 |
1 |
4 |
2 |
0 |
1 |
0 |
1 |
1 |
2 |
1 |
1 |
0 |
0 |
0 |
2 |
0 |
0 |
1 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Fraude |
115 |
113 |
138 |
114 |
134 |
138 |
134 |
106 |
110 |
124 |
130 |
130 |
104 |
106 |
117 |
141 |
172 |
153 |
153 |
167 |
167 |
132 |
161 |
119 |
157 |
171 |
181 |
159 |
192 |
186 |
152 |
188 |
143 |
195 |
184 |
126 |
143 |
157 |
211 |
156 |
189 |
172 |
189 |
209 |
185 |
182 |
174 |
152 |
189 |
164 |
221 |
207 |
222 |
180 |
257 |
224 |
206 |
210 |
192 |
208 |
241 |
192 |
173 |
123 |
155 |
199 |
245 |
278 |
291 |
309 |
276 |
282 |
254 |
273 |
319 |
274 |
300 |
308 |
294 |
295 |
284 |
309 |
277 |
313 |
289 |
308 |
326 |
312 |
310 |
319 |
0 |
0 |
0 |
0 |
0 |
0 |
Homicidio culposo |
23 |
29 |
24 |
20 |
30 |
25 |
24 |
20 |
30 |
25 |
32 |
34 |
22 |
23 |
30 |
28 |
33 |
23 |
33 |
24 |
18 |
23 |
21 |
25 |
20 |
27 |
18 |
30 |
28 |
26 |
24 |
27 |
27 |
28 |
14 |
27 |
30 |
20 |
30 |
27 |
25 |
34 |
29 |
21 |
22 |
18 |
33 |
21 |
25 |
32 |
33 |
27 |
28 |
20 |
23 |
26 |
27 |
21 |
34 |
31 |
24 |
27 |
23 |
24 |
26 |
24 |
25 |
18 |
21 |
27 |
24 |
20 |
24 |
23 |
27 |
22 |
33 |
30 |
25 |
26 |
31 |
27 |
37 |
42 |
28 |
25 |
20 |
34 |
29 |
25 |
0 |
0 |
0 |
0 |
0 |
0 |
Homicidio doloso |
9 |
9 |
12 |
11 |
11 |
10 |
12 |
13 |
10 |
13 |
13 |
8 |
12 |
9 |
12 |
8 |
14 |
7 |
7 |
6 |
15 |
8 |
12 |
8 |
12 |
12 |
14 |
21 |
8 |
21 |
10 |
20 |
19 |
14 |
9 |
15 |
14 |
10 |
15 |
12 |
14 |
16 |
14 |
18 |
22 |
7 |
16 |
22 |
13 |
16 |
18 |
13 |
15 |
11 |
17 |
17 |
20 |
9 |
12 |
15 |
12 |
11 |
26 |
11 |
18 |
8 |
15 |
23 |
11 |
22 |
13 |
12 |
15 |
14 |
16 |
21 |
22 |
9 |
14 |
11 |
16 |
14 |
19 |
14 |
17 |
12 |
3 |
15 |
15 |
12 |
0 |
0 |
0 |
0 |
0 |
0 |
Hostigamiento sexual |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
4 |
1 |
4 |
6 |
4 |
4 |
8 |
0 |
0 |
0 |
0 |
0 |
0 |
Incesto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incumplimiento de obligaciones de asistencia familiar |
67 |
75 |
59 |
61 |
64 |
66 |
67 |
85 |
66 |
79 |
76 |
47 |
58 |
57 |
79 |
69 |
92 |
50 |
103 |
75 |
74 |
63 |
63 |
46 |
63 |
50 |
84 |
77 |
78 |
87 |
76 |
68 |
85 |
79 |
57 |
44 |
69 |
72 |
50 |
63 |
52 |
74 |
38 |
56 |
43 |
64 |
53 |
29 |
43 |
39 |
73 |
53 |
63 |
66 |
58 |
71 |
52 |
82 |
52 |
45 |
75 |
71 |
60 |
11 |
9 |
18 |
57 |
47 |
45 |
62 |
55 |
45 |
29 |
32 |
67 |
50 |
37 |
42 |
51 |
44 |
45 |
51 |
57 |
44 |
60 |
63 |
66 |
61 |
60 |
64 |
0 |
0 |
0 |
0 |
0 |
0 |
Lesiones culposas |
37 |
42 |
45 |
45 |
42 |
45 |
32 |
37 |
44 |
53 |
51 |
68 |
44 |
46 |
45 |
59 |
41 |
83 |
70 |
72 |
83 |
82 |
95 |
64 |
76 |
53 |
71 |
71 |
78 |
61 |
52 |
60 |
70 |
72 |
62 |
67 |
59 |
65 |
75 |
74 |
81 |
69 |
83 |
85 |
70 |
91 |
77 |
64 |
78 |
70 |
71 |
65 |
80 |
69 |
77 |
91 |
105 |
87 |
83 |
96 |
56 |
80 |
91 |
63 |
40 |
73 |
57 |
64 |
82 |
99 |
71 |
71 |
64 |
63 |
90 |
96 |
86 |
97 |
92 |
84 |
70 |
88 |
88 |
105 |
73 |
71 |
81 |
76 |
111 |
75 |
0 |
0 |
0 |
0 |
0 |
0 |
Lesiones dolosas |
176 |
194 |
205 |
244 |
236 |
240 |
235 |
246 |
227 |
245 |
290 |
266 |
172 |
173 |
219 |
239 |
286 |
322 |
320 |
405 |
357 |
366 |
304 |
409 |
367 |
315 |
366 |
356 |
561 |
458 |
389 |
422 |
375 |
399 |
355 |
371 |
325 |
335 |
448 |
459 |
504 |
432 |
519 |
419 |
421 |
509 |
400 |
423 |
402 |
413 |
503 |
483 |
614 |
522 |
499 |
448 |
498 |
461 |
380 |
467 |
353 |
417 |
488 |
433 |
326 |
398 |
481 |
393 |
415 |
397 |
340 |
356 |
308 |
333 |
479 |
487 |
460 |
412 |
396 |
399 |
357 |
360 |
364 |
413 |
352 |
332 |
343 |
358 |
442 |
372 |
0 |
0 |
0 |
0 |
0 |
0 |
Narcomenudeo |
21 |
22 |
18 |
19 |
18 |
18 |
10 |
7 |
10 |
30 |
30 |
21 |
62 |
84 |
79 |
63 |
42 |
61 |
72 |
74 |
72 |
68 |
71 |
78 |
97 |
74 |
91 |
66 |
81 |
84 |
91 |
70 |
58 |
67 |
82 |
81 |
85 |
79 |
85 |
98 |
92 |
83 |
106 |
112 |
97 |
115 |
88 |
109 |
139 |
133 |
138 |
139 |
165 |
158 |
152 |
119 |
117 |
126 |
107 |
86 |
133 |
122 |
102 |
77 |
78 |
72 |
79 |
89 |
106 |
97 |
90 |
89 |
88 |
79 |
117 |
100 |
76 |
88 |
97 |
108 |
70 |
140 |
82 |
109 |
98 |
93 |
93 |
99 |
123 |
140 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos contra el patrimonio |
2 |
0 |
3 |
4 |
4 |
2 |
4 |
2 |
2 |
2 |
5 |
3 |
1 |
3 |
2 |
2 |
6 |
1 |
2 |
3 |
3 |
2 |
2 |
1 |
1 |
5 |
5 |
4 |
3 |
2 |
4 |
2 |
5 |
3 |
1 |
3 |
1 |
4 |
4 |
5 |
6 |
1 |
3 |
3 |
3 |
4 |
2 |
1 |
1 |
3 |
9 |
2 |
3 |
5 |
7 |
4 |
6 |
4 |
1 |
3 |
4 |
2 |
5 |
3 |
2 |
4 |
5 |
5 |
5 |
3 |
5 |
4 |
7 |
4 |
4 |
6 |
3 |
4 |
6 |
4 |
4 |
2 |
4 |
1 |
2 |
3 |
5 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos contra la familia |
3 |
4 |
3 |
6 |
5 |
4 |
5 |
4 |
10 |
8 |
4 |
10 |
4 |
8 |
5 |
15 |
11 |
4 |
10 |
14 |
8 |
12 |
10 |
11 |
9 |
5 |
11 |
13 |
17 |
12 |
13 |
23 |
11 |
14 |
10 |
26 |
21 |
17 |
16 |
14 |
16 |
14 |
19 |
26 |
15 |
18 |
18 |
17 |
12 |
6 |
13 |
17 |
28 |
15 |
20 |
29 |
15 |
18 |
14 |
20 |
14 |
13 |
23 |
12 |
11 |
14 |
26 |
19 |
22 |
17 |
9 |
21 |
22 |
13 |
24 |
21 |
15 |
17 |
26 |
20 |
20 |
24 |
15 |
39 |
29 |
20 |
20 |
19 |
24 |
19 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos contra la sociedad |
12 |
8 |
14 |
9 |
5 |
13 |
8 |
6 |
10 |
11 |
4 |
8 |
12 |
7 |
18 |
15 |
16 |
13 |
8 |
7 |
9 |
6 |
9 |
4 |
6 |
12 |
11 |
14 |
14 |
6 |
13 |
12 |
16 |
9 |
9 |
10 |
3 |
17 |
11 |
7 |
16 |
11 |
14 |
5 |
10 |
9 |
13 |
16 |
8 |
9 |
11 |
15 |
12 |
11 |
7 |
8 |
25 |
39 |
23 |
15 |
15 |
17 |
29 |
16 |
25 |
12 |
23 |
30 |
54 |
47 |
63 |
69 |
62 |
50 |
46 |
39 |
31 |
40 |
32 |
40 |
48 |
47 |
24 |
20 |
23 |
17 |
39 |
24 |
27 |
40 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos del Fuero Común |
106 |
112 |
121 |
96 |
107 |
142 |
130 |
120 |
114 |
136 |
166 |
163 |
122 |
133 |
163 |
148 |
202 |
233 |
268 |
245 |
267 |
269 |
236 |
275 |
252 |
259 |
317 |
252 |
304 |
350 |
300 |
323 |
287 |
321 |
262 |
305 |
302 |
348 |
388 |
382 |
366 |
355 |
349 |
339 |
373 |
428 |
318 |
346 |
376 |
364 |
359 |
397 |
469 |
424 |
465 |
461 |
414 |
453 |
401 |
339 |
402 |
402 |
398 |
295 |
326 |
328 |
302 |
292 |
310 |
346 |
321 |
341 |
310 |
318 |
365 |
366 |
381 |
344 |
368 |
368 |
320 |
323 |
279 |
345 |
276 |
337 |
397 |
333 |
365 |
398 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la libertad personal |
3 |
1 |
2 |
3 |
1 |
8 |
2 |
3 |
2 |
3 |
3 |
2 |
3 |
0 |
2 |
2 |
1 |
2 |
3 |
2 |
1 |
6 |
3 |
1 |
8 |
3 |
3 |
4 |
0 |
8 |
6 |
0 |
1 |
7 |
1 |
3 |
1 |
2 |
2 |
2 |
1 |
2 |
1 |
4 |
4 |
3 |
5 |
3 |
3 |
1 |
4 |
3 |
10 |
5 |
7 |
4 |
7 |
2 |
4 |
2 |
4 |
8 |
15 |
13 |
7 |
7 |
4 |
5 |
12 |
9 |
10 |
11 |
7 |
5 |
10 |
16 |
15 |
10 |
18 |
8 |
9 |
11 |
15 |
15 |
14 |
12 |
11 |
21 |
21 |
22 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
7 |
1 |
7 |
4 |
6 |
6 |
2 |
2 |
4 |
4 |
6 |
4 |
3 |
4 |
4 |
2 |
9 |
1 |
5 |
8 |
1 |
2 |
2 |
4 |
1 |
4 |
5 |
2 |
6 |
1 |
7 |
7 |
2 |
3 |
6 |
3 |
4 |
7 |
2 |
3 |
2 |
1 |
2 |
2 |
3 |
2 |
0 |
1 |
3 |
4 |
6 |
4 |
6 |
3 |
5 |
5 |
5 |
5 |
2 |
3 |
6 |
7 |
2 |
5 |
4 |
4 |
7 |
2 |
4 |
4 |
4 |
5 |
5 |
3 |
6 |
5 |
4 |
4 |
3 |
7 |
4 |
3 |
4 |
3 |
3 |
6 |
2 |
3 |
3 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la vida y la integridad corporal |
50 |
36 |
60 |
58 |
47 |
52 |
44 |
44 |
53 |
72 |
59 |
84 |
24 |
35 |
44 |
40 |
48 |
74 |
55 |
81 |
66 |
54 |
56 |
49 |
54 |
70 |
69 |
67 |
61 |
63 |
58 |
61 |
48 |
83 |
63 |
67 |
64 |
54 |
66 |
59 |
80 |
64 |
62 |
55 |
57 |
61 |
66 |
79 |
67 |
70 |
72 |
76 |
73 |
72 |
95 |
84 |
80 |
85 |
80 |
86 |
77 |
93 |
90 |
76 |
80 |
83 |
76 |
106 |
100 |
80 |
88 |
73 |
91 |
80 |
93 |
110 |
123 |
111 |
128 |
112 |
113 |
135 |
109 |
128 |
110 |
75 |
100 |
93 |
91 |
62 |
0 |
0 |
0 |
0 |
0 |
0 |
Otros robos |
573 |
539 |
543 |
542 |
560 |
557 |
534 |
563 |
580 |
627 |
556 |
494 |
556 |
480 |
559 |
591 |
551 |
649 |
719 |
788 |
731 |
822 |
724 |
649 |
716 |
710 |
797 |
710 |
777 |
877 |
805 |
898 |
887 |
912 |
946 |
844 |
816 |
795 |
866 |
887 |
926 |
947 |
903 |
929 |
865 |
931 |
800 |
828 |
963 |
940 |
1015 |
942 |
884 |
938 |
967 |
978 |
871 |
1029 |
950 |
1018 |
936 |
905 |
933 |
734 |
722 |
677 |
785 |
858 |
872 |
893 |
822 |
830 |
774 |
759 |
903 |
818 |
890 |
848 |
880 |
875 |
872 |
907 |
958 |
957 |
875 |
811 |
954 |
858 |
917 |
938 |
0 |
0 |
0 |
0 |
0 |
0 |
Rapto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a casa habitación |
165 |
161 |
215 |
220 |
236 |
202 |
184 |
212 |
223 |
192 |
201 |
206 |
194 |
204 |
213 |
218 |
213 |
285 |
292 |
317 |
289 |
383 |
309 |
365 |
308 |
291 |
351 |
282 |
304 |
331 |
327 |
327 |
327 |
345 |
356 |
303 |
369 |
271 |
344 |
331 |
312 |
270 |
352 |
361 |
357 |
320 |
282 |
360 |
340 |
260 |
278 |
303 |
320 |
265 |
303 |
290 |
266 |
267 |
264 |
253 |
317 |
261 |
219 |
188 |
179 |
190 |
227 |
227 |
226 |
229 |
256 |
216 |
219 |
181 |
206 |
201 |
236 |
177 |
181 |
188 |
199 |
210 |
199 |
218 |
209 |
177 |
200 |
203 |
212 |
208 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a institución bancaria |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a negocio |
177 |
129 |
192 |
191 |
140 |
152 |
153 |
157 |
136 |
151 |
140 |
132 |
154 |
132 |
154 |
152 |
185 |
220 |
294 |
244 |
249 |
296 |
264 |
269 |
257 |
256 |
314 |
252 |
261 |
229 |
271 |
295 |
294 |
294 |
292 |
348 |
296 |
267 |
262 |
249 |
262 |
215 |
224 |
237 |
223 |
292 |
299 |
226 |
257 |
248 |
268 |
281 |
312 |
272 |
312 |
319 |
252 |
297 |
299 |
262 |
286 |
238 |
270 |
214 |
219 |
232 |
259 |
293 |
293 |
336 |
286 |
270 |
217 |
176 |
164 |
167 |
169 |
160 |
182 |
213 |
201 |
236 |
234 |
215 |
222 |
212 |
237 |
210 |
186 |
226 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a transeúnte en espacio abierto al público |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
2 |
2 |
3 |
1 |
1 |
2 |
3 |
9 |
7 |
6 |
7 |
6 |
5 |
4 |
18 |
8 |
8 |
6 |
16 |
27 |
22 |
24 |
17 |
13 |
14 |
30 |
0 |
11 |
20 |
31 |
11 |
13 |
21 |
13 |
45 |
14 |
22 |
16 |
14 |
14 |
7 |
14 |
14 |
8 |
22 |
7 |
12 |
16 |
8 |
22 |
11 |
14 |
7 |
9 |
6 |
9 |
7 |
9 |
8 |
8 |
5 |
12 |
4 |
12 |
3 |
11 |
9 |
9 |
4 |
7 |
12 |
8 |
6 |
0 |
9 |
3 |
5 |
4 |
9 |
8 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a transeúnte en vía pública |
101 |
58 |
110 |
80 |
97 |
80 |
83 |
88 |
116 |
118 |
108 |
90 |
87 |
64 |
114 |
104 |
110 |
149 |
158 |
186 |
185 |
172 |
150 |
176 |
140 |
147 |
157 |
157 |
151 |
161 |
141 |
169 |
169 |
195 |
194 |
195 |
199 |
178 |
159 |
135 |
181 |
160 |
178 |
170 |
137 |
203 |
153 |
147 |
124 |
133 |
115 |
145 |
145 |
122 |
113 |
137 |
146 |
162 |
156 |
116 |
110 |
134 |
149 |
85 |
91 |
110 |
133 |
141 |
127 |
120 |
110 |
122 |
101 |
95 |
135 |
102 |
127 |
123 |
116 |
113 |
108 |
106 |
112 |
104 |
111 |
112 |
124 |
144 |
130 |
120 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a transportista |
8 |
20 |
9 |
10 |
10 |
13 |
8 |
10 |
6 |
16 |
17 |
14 |
20 |
22 |
8 |
10 |
15 |
14 |
10 |
1 |
7 |
11 |
4 |
3 |
10 |
7 |
8 |
2 |
3 |
6 |
10 |
11 |
11 |
16 |
4 |
10 |
33 |
17 |
21 |
18 |
11 |
2 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo de autopartes |
33 |
26 |
39 |
34 |
37 |
30 |
52 |
34 |
34 |
41 |
40 |
28 |
36 |
22 |
16 |
16 |
14 |
49 |
62 |
52 |
46 |
49 |
43 |
40 |
55 |
64 |
57 |
72 |
55 |
76 |
53 |
70 |
76 |
86 |
87 |
57 |
78 |
86 |
100 |
94 |
116 |
90 |
104 |
86 |
104 |
90 |
73 |
73 |
110 |
96 |
75 |
68 |
63 |
69 |
76 |
58 |
61 |
71 |
39 |
45 |
70 |
61 |
81 |
68 |
46 |
49 |
52 |
62 |
49 |
38 |
47 |
31 |
48 |
64 |
48 |
53 |
42 |
52 |
37 |
53 |
33 |
22 |
47 |
45 |
51 |
48 |
57 |
26 |
36 |
58 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo de ganado |
26 |
24 |
24 |
22 |
19 |
28 |
42 |
34 |
32 |
22 |
14 |
32 |
30 |
26 |
21 |
20 |
26 |
18 |
13 |
20 |
18 |
26 |
26 |
22 |
14 |
20 |
20 |
7 |
20 |
18 |
27 |
17 |
16 |
21 |
21 |
23 |
28 |
31 |
12 |
9 |
15 |
19 |
16 |
21 |
11 |
16 |
13 |
14 |
17 |
33 |
19 |
19 |
29 |
19 |
19 |
27 |
19 |
22 |
13 |
22 |
22 |
11 |
15 |
7 |
18 |
12 |
10 |
19 |
16 |
20 |
12 |
11 |
15 |
11 |
20 |
22 |
11 |
11 |
22 |
11 |
11 |
8 |
9 |
16 |
6 |
5 |
14 |
11 |
10 |
11 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo de maquinaria |
0 |
1 |
1 |
3 |
2 |
2 |
3 |
1 |
1 |
2 |
3 |
1 |
2 |
3 |
2 |
2 |
3 |
3 |
0 |
1 |
3 |
2 |
1 |
1 |
0 |
0 |
4 |
0 |
6 |
3 |
1 |
1 |
1 |
2 |
0 |
4 |
1 |
1 |
0 |
1 |
3 |
2 |
1 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
2 |
2 |
1 |
2 |
4 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
3 |
0 |
0 |
3 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo de vehículo automotor |
313 |
275 |
274 |
273 |
326 |
340 |
320 |
364 |
389 |
350 |
311 |
337 |
326 |
305 |
378 |
347 |
372 |
415 |
408 |
504 |
458 |
478 |
440 |
449 |
423 |
412 |
457 |
411 |
500 |
516 |
513 |
516 |
496 |
510 |
494 |
490 |
508 |
398 |
468 |
474 |
535 |
525 |
556 |
632 |
480 |
527 |
468 |
594 |
472 |
442 |
441 |
473 |
426 |
399 |
402 |
372 |
355 |
357 |
376 |
407 |
347 |
338 |
328 |
272 |
223 |
236 |
338 |
299 |
280 |
333 |
318 |
319 |
298 |
276 |
310 |
273 |
299 |
285 |
322 |
306 |
306 |
341 |
385 |
366 |
349 |
295 |
378 |
333 |
350 |
313 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo en transporte individual |
22 |
12 |
16 |
12 |
16 |
22 |
11 |
23 |
26 |
19 |
29 |
28 |
26 |
24 |
25 |
15 |
35 |
19 |
22 |
32 |
19 |
25 |
36 |
28 |
17 |
25 |
41 |
25 |
27 |
22 |
27 |
29 |
37 |
31 |
33 |
41 |
33 |
33 |
28 |
21 |
34 |
38 |
24 |
30 |
37 |
31 |
37 |
29 |
22 |
20 |
19 |
36 |
35 |
42 |
27 |
28 |
35 |
43 |
23 |
27 |
27 |
27 |
28 |
17 |
32 |
42 |
50 |
31 |
39 |
32 |
28 |
27 |
29 |
24 |
23 |
24 |
21 |
19 |
33 |
27 |
35 |
31 |
20 |
38 |
44 |
35 |
43 |
33 |
38 |
34 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo en transporte público colectivo |
29 |
26 |
51 |
33 |
27 |
20 |
38 |
60 |
60 |
54 |
41 |
48 |
28 |
38 |
35 |
47 |
53 |
57 |
55 |
75 |
61 |
66 |
46 |
32 |
38 |
31 |
33 |
33 |
34 |
65 |
52 |
33 |
24 |
16 |
17 |
24 |
15 |
12 |
10 |
2 |
7 |
6 |
5 |
7 |
5 |
5 |
9 |
9 |
16 |
7 |
4 |
13 |
12 |
16 |
13 |
21 |
24 |
47 |
51 |
27 |
30 |
42 |
21 |
28 |
37 |
34 |
35 |
22 |
33 |
19 |
24 |
15 |
15 |
27 |
34 |
41 |
29 |
24 |
31 |
12 |
22 |
23 |
22 |
27 |
12 |
9 |
18 |
11 |
8 |
8 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo en transporte público individual |
6 |
3 |
7 |
6 |
3 |
7 |
5 |
2 |
4 |
5 |
2 |
5 |
1 |
4 |
5 |
4 |
1 |
6 |
9 |
7 |
6 |
6 |
0 |
6 |
7 |
5 |
12 |
10 |
8 |
12 |
14 |
12 |
10 |
5 |
5 |
2 |
7 |
11 |
8 |
5 |
12 |
8 |
8 |
6 |
11 |
6 |
6 |
6 |
8 |
14 |
15 |
8 |
6 |
6 |
12 |
8 |
17 |
8 |
13 |
20 |
11 |
10 |
21 |
14 |
11 |
9 |
7 |
10 |
3 |
15 |
9 |
12 |
19 |
9 |
15 |
14 |
15 |
14 |
10 |
14 |
2 |
9 |
10 |
0 |
8 |
6 |
5 |
5 |
5 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
Secuestro |
1 |
0 |
2 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
0 |
3 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
2 |
0 |
3 |
3 |
2 |
0 |
1 |
0 |
2 |
0 |
3 |
0 |
1 |
1 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
2 |
3 |
1 |
1 |
1 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
2 |
2 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
2 |
2 |
1 |
0 |
1 |
5 |
0 |
1 |
2 |
2 |
1 |
1 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Tráfico de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Trata de personas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
1 |
0 |
0 |
1 |
3 |
0 |
1 |
0 |
0 |
0 |
3 |
1 |
2 |
1 |
3 |
1 |
1 |
2 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Violación equiparada |
1 |
3 |
3 |
2 |
1 |
2 |
3 |
1 |
3 |
4 |
1 |
5 |
1 |
1 |
4 |
1 |
3 |
6 |
7 |
4 |
6 |
3 |
7 |
6 |
6 |
8 |
4 |
1 |
11 |
10 |
7 |
9 |
9 |
6 |
6 |
4 |
10 |
5 |
6 |
5 |
6 |
9 |
4 |
4 |
6 |
5 |
9 |
4 |
3 |
9 |
8 |
7 |
12 |
5 |
9 |
12 |
5 |
7 |
11 |
14 |
11 |
14 |
4 |
12 |
16 |
20 |
9 |
20 |
13 |
23 |
15 |
13 |
16 |
21 |
28 |
25 |
22 |
13 |
17 |
19 |
21 |
31 |
20 |
21 |
23 |
14 |
29 |
31 |
28 |
29 |
0 |
0 |
0 |
0 |
0 |
0 |
Violación simple |
17 |
11 |
30 |
25 |
31 |
22 |
29 |
28 |
24 |
28 |
28 |
21 |
16 |
20 |
21 |
24 |
34 |
22 |
25 |
25 |
37 |
24 |
28 |
9 |
12 |
21 |
31 |
23 |
36 |
31 |
25 |
27 |
23 |
24 |
24 |
19 |
18 |
25 |
18 |
18 |
22 |
32 |
23 |
23 |
20 |
22 |
27 |
14 |
20 |
24 |
29 |
33 |
44 |
47 |
49 |
33 |
28 |
44 |
43 |
51 |
47 |
39 |
47 |
30 |
25 |
26 |
33 |
30 |
29 |
29 |
33 |
27 |
32 |
37 |
35 |
38 |
29 |
41 |
37 |
38 |
33 |
48 |
32 |
29 |
24 |
28 |
33 |
35 |
37 |
37 |
0 |
0 |
0 |
0 |
0 |
0 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
2 |
0 |
1 |
0 |
1 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
0 |
2 |
3 |
4 |
5 |
4 |
7 |
8 |
13 |
9 |
14 |
16 |
17 |
30 |
23 |
18 |
26 |
58 |
63 |
77 |
44 |
0 |
0 |
0 |
0 |
0 |
0 |
Violencia familiar |
49 |
67 |
81 |
74 |
86 |
76 |
73 |
82 |
86 |
106 |
83 |
79 |
59 |
72 |
80 |
82 |
75 |
76 |
83 |
95 |
89 |
103 |
82 |
69 |
85 |
63 |
96 |
83 |
123 |
92 |
106 |
126 |
86 |
111 |
103 |
112 |
113 |
97 |
136 |
178 |
179 |
154 |
177 |
175 |
182 |
188 |
142 |
144 |
150 |
159 |
221 |
236 |
245 |
216 |
385 |
354 |
286 |
338 |
283 |
262 |
260 |
298 |
376 |
297 |
308 |
261 |
342 |
295 |
274 |
313 |
281 |
247 |
266 |
286 |
337 |
289 |
368 |
346 |
354 |
308 |
307 |
325 |
286 |
312 |
289 |
265 |
391 |
426 |
527 |
472 |
0 |
0 |
0 |
0 |
0 |
0 |
Delitos que aumentaron respecto del mismo mes en el año anterior(en tasa por cada 1000 habitantes)
kable(aumentoContraUnAno)
Abuso sexual |
Acoso sexual |
Extorsión |
Falsedad |
Fraude |
Homicidio doloso |
Hostigamiento sexual |
Incumplimiento de obligaciones de asistencia familiar |
Narcomenudeo |
Otros delitos del Fuero Común |
Otros delitos que atentan contra la libertad personal |
Otros robos |
Robo a casa habitación |
Robo a negocio |
Robo de autopartes |
Robo de vehículo automotor |
Robo en transporte individual |
Violación equiparada |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
Violencia familiar |
Delitos en su máximo del año en Querétaro
#MAximo en el año
stop3<-stop1-(stop1 %% 12)+2
if(stop3>stop1){
stop3<-stop3-12
}else{stop3<-stop3}
soloEsteAno<-catalogoDelitos[,c(1,stop3:stop1)]
if(dim(soloEsteAno)[2]==2){
maxAno<-soloEsteAno[,2:ncol(soloEsteAno)]
}else{
maxAno<-apply(X = soloEsteAno[,2:ncol(soloEsteAno)],MARGIN = 1,FUN = max)
}
delitosEnmaximoAnual<-soloEsteAno$Delito[soloEsteAno[,ncol(soloEsteAno)]>=maxAno & soloEsteAno[ncol(soloEsteAno)]!=0]
kable(delitosEnmaximoAnual)
Acoso sexual |
Despojo |
Falsedad |
Hostigamiento sexual |
Narcomenudeo |
Otros delitos contra la sociedad |
Otros delitos del Fuero Común |
Otros delitos que atentan contra la libertad personal |
Robo de autopartes |
Robo de maquinaria |
Violación simple |
Municipal
Municipios que aumentaron respecto del mismo mes del año anterior (Junio )
#Superior al mismo périodo del año anterior
catalogoMunicipios<-as.data.frame(sort(unique(delitosQRO2020$Cve..Municipio)))
losMeses2020<-sort(unique(delitosQRO2020$periodo))
for (i in 1:length(losMeses2020)){
a<-subset(delitosQRO2020, delitosQRO2020$periodo==losMeses2020[i])
b<-as.data.frame(aggregate(a$value~a$Cve..Municipio,a,sum))[2]
catalogoMunicipios<-cbind(catalogoMunicipios,b)
}
names(catalogoMunicipios)<-c("cveMun", losMeses2020)
catalogoMunicipios<-catalogoMunicipios[1:18,]
pop2020Qro<-subset(pop2020,pop2020$CLAVE_ENT==22)
popQro20<- aggregate(pop2020Qro$POB~ pop2020Qro$CLAVE,pop2020Qro,sum)
pop2019Qro<-subset(pop,pop$CLAVE_ENT==22 & pop$ANO==2019)
popQro19<- aggregate(pop2019Qro$POB~ pop2019Qro$CLAVE,pop2019Qro,sum)
comparaAnoAnteriorMUN<-catalogoMunicipios[,c(1,stop2,stop1)]
comparaAnoAnteriorMUNTasa<-comparaAnoAnteriorMUN
comparaAnoAnteriorMUNTasa[2]<-round(comparaAnoAnteriorMUNTasa[2]/popQro19[2]*1000,3)
comparaAnoAnteriorMUNTasa[3]<-round(comparaAnoAnteriorMUNTasa[3]/popQro20[2]*1000,3)
names(comparaAnoAnteriorMUNTasa)<-c("Delito", "Tasa 2019", "Tasa 2020")
comparaAnoAnteriorMUNTasa$cambio<-NA
comparaAnoAnteriorMUNTasa$cambio<-round((comparaAnoAnteriorMUNTasa[3]-comparaAnoAnteriorMUNTasa[2])/comparaAnoAnteriorMUNTasa[2],2)
misMuns<-catalogoMunicipios[,1]
catalogoMunicipios$nomMun<-NA
nomMun<-c()
for (i in 1:length(misMuns)) {
catalogoMunicipios$nomMun[i]<-unique(delitosQRO2020$Municipio[delitosQRO2020$Cve..Municipio==misMuns[i]])
nomMun[i]<-unique(delitosQRO2020$Municipio[delitosQRO2020$Cve..Municipio==misMuns[i]])
}
aumento<-comparaAnoAnteriorMUNTasa$Delito[comparaAnoAnteriorMUNTasa$cambio>0 & !is.na(comparaAnoAnteriorMUNTasa$cambio)]
aumentoContraUnAnoMUNICIPAL<-NA
for (i in 1:length(aumento)) {
aumentoContraUnAnoMUNICIPAL[i]<-catalogoMunicipios$nomMun[catalogoMunicipios$cveMun==aumento[i]]
}
names(aumentoContraUnAnoMUNICIPAL)<-c("Municipios")
kable(aumentoContraUnAnoMUNICIPAL,caption = "Municipios cuya tasa por cada 1000 habitantes aumentó respecto del mismo mes del año anterior")
Municipios cuya tasa por cada 1000 habitantes aumentó respecto del mismo mes del año anterior
Arroyo Seco |
Cadereyta de Montes |
Colón |
Corregidora |
Ezequiel Montes |
Huimilpan |
Landa de Matamoros |
Pedro Escobedo |
Querétaro |
San Juan del Río |
Tequisquiapan |
Cambio respecto del mes anterior por municipio
stop4<-stop1-1
municipio<-as.data.frame(cbind(catalogoMunicipios$cveMun, catalogoMunicipios$nomMun,catalogoMunicipios[,stop4],catalogoMunicipios[,stop1]))
municipio$tasa<-NA
municipio$tasa<-round((as.numeric(municipio[,4])-as.numeric(municipio[,3]) )/as.numeric(municipio[,3])*100,2)
names(municipio)<-c("cveMun","Municipio",anterior, esteMes,"Tasa de cambio respecto del mes anterior (%)")
kable(municipio[2:5])
Amealco de Bonfil |
76 |
76 |
0.00 |
Pinal de Amoles |
26 |
20 |
-23.08 |
Arroyo Seco |
11 |
19 |
72.73 |
Cadereyta de Montes |
75 |
97 |
29.33 |
Colón |
65 |
90 |
38.46 |
Corregidora |
413 |
359 |
-13.08 |
Ezequiel Montes |
92 |
76 |
-17.39 |
Huimilpan |
49 |
57 |
16.33 |
Jalpan de Serra |
48 |
37 |
-22.92 |
Landa de Matamoros |
17 |
15 |
-11.76 |
El Marqués |
297 |
290 |
-2.36 |
Pedro Escobedo |
78 |
100 |
28.21 |
Peñamiller |
8 |
8 |
0.00 |
Querétaro |
3071 |
2889 |
-5.93 |
San Joaquín |
10 |
8 |
-20.00 |
San Juan del Río |
671 |
614 |
-8.49 |
Tequisquiapan |
117 |
132 |
12.82 |
Tolimán |
31 |
31 |
0.00 |
Municipios en Máximo Anual
soloEsteAnoMUN<-catalogoMunicipios[,c(1,stop3:stop1)]
if(dim(soloEsteAnoMUN)[2]==2){maxAnoMun<-soloEsteAnoMUN[,2:ncol(soloEsteAnoMUN)]}else{
maxAnoMun<-apply(X = soloEsteAnoMUN[,2:ncol(soloEsteAnoMUN)],MARGIN = 1,FUN = max)}
municipiosEnmaximoAnual<-soloEsteAnoMUN
municipiosEnmaximoAnual<-soloEsteAnoMUN$cveMun[soloEsteAnoMUN[,ncol(soloEsteAnoMUN)]>=maxAnoMun & soloEsteAnoMUN[ncol(soloEsteAnoMUN)]!=0]
munmax<-c()
for (i in 1:length(municipiosEnmaximoAnual)) {
munmax[i]<-catalogoMunicipios$nomMun[catalogoMunicipios$cveMun==municipiosEnmaximoAnual[i]]
}
if(length(munmax)!=0|!is.null(length(munmax))){
munmax<-data.frame(munmax)
names(munmax)<-c("Municipios en Máximo Anual")
kable(munmax)
}
Arroyo Seco |
Cadereyta de Montes |
Huimilpan |
Pedro Escobedo |
Tequisquiapan |
Municipios en su nivel máximo (absoluto) registrado
maximoAbsolutoMUNICIPAL<-apply(X = catalogoMunicipios[,2:stop1], MARGIN = 1,max)
estePeriodoMunicipal<-catalogoMunicipios[,stop1]
municipiosEnmaximoAbsoluto<-catalogoMunicipios$nomMun[estePeriodoMunicipal!=0 & estePeriodoMunicipal>=maximoAbsolutoMUNICIPAL]
if(!is.null(dim(municipiosEnmaximoAbsoluto))){
names(municipiosEnmaximoAbsoluto)<-c("Municipios en máximo histórico (absoluto) registrado")
}
kable(municipiosEnmaximoAbsoluto)
Serie de tiempo municipal (Absolutos)
catalogoMunicipios2<-catalogoMunicipios
names(catalogoMunicipios2[2:73])<-paste0(substr(names(catalogoMunicipios2[2:73]),5,6),"-",substr(names(catalogoMunicipios2[2:73]),1,4))
catalogoMunicipios2<-cbind(catalogoMunicipios2[,1],catalogoMunicipios2[,74],catalogoMunicipios2[,2:stop1])
names(catalogoMunicipios2)[c(1,2)]<-c("Clave","Municipio")
kable(catalogoMunicipios2)
22001 |
70 |
45 |
47 |
52 |
40 |
52 |
51 |
50 |
59 |
42 |
52 |
55 |
70 |
48 |
51 |
53 |
52 |
71 |
50 |
59 |
49 |
43 |
44 |
40 |
40 |
51 |
36 |
45 |
43 |
43 |
81 |
48 |
42 |
48 |
40 |
48 |
37 |
54 |
46 |
43 |
34 |
38 |
80 |
90 |
80 |
53 |
70 |
73 |
70 |
92 |
89 |
92 |
101 |
101 |
105 |
80 |
74 |
65 |
87 |
87 |
88 |
76 |
84 |
93 |
75 |
53 |
74 |
67 |
74 |
76 |
75 |
65 |
63 |
70 |
62 |
91 |
96 |
91 |
86 |
63 |
79 |
57 |
73 |
68 |
79 |
71 |
59 |
86 |
62 |
76 |
76 |
22002 |
21 |
14 |
3 |
10 |
10 |
11 |
12 |
11 |
6 |
10 |
11 |
3 |
11 |
10 |
17 |
9 |
14 |
10 |
9 |
5 |
10 |
8 |
17 |
4 |
13 |
8 |
7 |
17 |
13 |
14 |
11 |
13 |
12 |
11 |
21 |
13 |
6 |
9 |
11 |
9 |
18 |
26 |
28 |
28 |
15 |
18 |
15 |
12 |
7 |
9 |
21 |
16 |
25 |
15 |
21 |
21 |
21 |
15 |
18 |
18 |
19 |
20 |
20 |
19 |
19 |
28 |
21 |
12 |
20 |
15 |
11 |
18 |
14 |
21 |
20 |
19 |
24 |
26 |
20 |
22 |
19 |
19 |
10 |
12 |
20 |
21 |
14 |
21 |
25 |
26 |
20 |
22003 |
5 |
5 |
4 |
5 |
4 |
4 |
5 |
7 |
8 |
5 |
4 |
5 |
3 |
2 |
2 |
4 |
3 |
7 |
6 |
6 |
2 |
5 |
2 |
3 |
9 |
6 |
6 |
3 |
5 |
4 |
2 |
9 |
7 |
2 |
3 |
5 |
3 |
3 |
6 |
6 |
8 |
12 |
8 |
12 |
5 |
2 |
8 |
3 |
9 |
17 |
7 |
7 |
9 |
7 |
9 |
12 |
8 |
5 |
7 |
20 |
10 |
11 |
4 |
16 |
11 |
10 |
8 |
10 |
10 |
7 |
8 |
4 |
0 |
5 |
4 |
7 |
9 |
6 |
15 |
8 |
5 |
6 |
13 |
9 |
12 |
5 |
15 |
15 |
11 |
11 |
19 |
22004 |
75 |
41 |
37 |
37 |
37 |
38 |
47 |
40 |
36 |
50 |
29 |
37 |
40 |
47 |
48 |
47 |
58 |
52 |
41 |
51 |
45 |
42 |
50 |
37 |
38 |
43 |
44 |
46 |
48 |
51 |
59 |
47 |
48 |
49 |
49 |
40 |
27 |
38 |
50 |
46 |
59 |
48 |
74 |
84 |
60 |
109 |
75 |
53 |
64 |
58 |
88 |
87 |
60 |
66 |
62 |
75 |
80 |
71 |
60 |
74 |
72 |
52 |
69 |
61 |
65 |
64 |
59 |
72 |
54 |
62 |
64 |
72 |
73 |
75 |
71 |
74 |
76 |
88 |
52 |
91 |
61 |
78 |
73 |
66 |
96 |
71 |
67 |
88 |
81 |
75 |
97 |
22005 |
55 |
40 |
30 |
46 |
42 |
40 |
56 |
45 |
40 |
48 |
38 |
47 |
36 |
49 |
53 |
50 |
49 |
57 |
63 |
56 |
60 |
71 |
66 |
55 |
52 |
45 |
60 |
53 |
50 |
57 |
67 |
48 |
48 |
36 |
54 |
55 |
56 |
47 |
53 |
49 |
62 |
54 |
61 |
80 |
53 |
67 |
77 |
54 |
65 |
62 |
59 |
71 |
76 |
67 |
70 |
75 |
82 |
86 |
80 |
59 |
71 |
72 |
62 |
81 |
69 |
64 |
82 |
61 |
66 |
91 |
74 |
69 |
70 |
55 |
72 |
93 |
91 |
67 |
73 |
73 |
57 |
55 |
83 |
76 |
82 |
71 |
62 |
96 |
73 |
65 |
90 |
22006 |
236 |
176 |
166 |
186 |
179 |
200 |
218 |
189 |
183 |
189 |
210 |
211 |
182 |
185 |
192 |
183 |
213 |
226 |
297 |
338 |
359 |
302 |
304 |
308 |
306 |
321 |
311 |
368 |
283 |
361 |
304 |
343 |
306 |
342 |
352 |
298 |
330 |
345 |
329 |
397 |
362 |
379 |
387 |
390 |
373 |
349 |
365 |
329 |
373 |
353 |
333 |
396 |
374 |
399 |
379 |
382 |
364 |
346 |
394 |
377 |
333 |
400 |
358 |
349 |
260 |
253 |
254 |
315 |
302 |
317 |
342 |
302 |
285 |
236 |
251 |
261 |
302 |
312 |
278 |
277 |
273 |
253 |
260 |
294 |
354 |
294 |
343 |
400 |
378 |
413 |
359 |
22007 |
62 |
30 |
38 |
25 |
23 |
22 |
42 |
37 |
31 |
40 |
47 |
43 |
43 |
26 |
35 |
68 |
55 |
57 |
40 |
41 |
48 |
48 |
47 |
37 |
39 |
28 |
22 |
36 |
26 |
32 |
38 |
47 |
38 |
39 |
43 |
48 |
30 |
51 |
52 |
42 |
51 |
46 |
58 |
64 |
75 |
63 |
46 |
59 |
54 |
54 |
46 |
90 |
59 |
61 |
62 |
54 |
60 |
63 |
55 |
55 |
46 |
62 |
55 |
57 |
35 |
63 |
56 |
43 |
44 |
37 |
51 |
68 |
53 |
62 |
55 |
63 |
54 |
68 |
47 |
62 |
54 |
62 |
62 |
39 |
58 |
53 |
55 |
80 |
69 |
92 |
76 |
22008 |
31 |
36 |
33 |
42 |
28 |
25 |
39 |
30 |
33 |
32 |
26 |
52 |
35 |
29 |
36 |
42 |
21 |
33 |
28 |
34 |
31 |
28 |
29 |
40 |
22 |
22 |
21 |
23 |
24 |
37 |
29 |
26 |
41 |
32 |
35 |
20 |
35 |
29 |
37 |
33 |
28 |
28 |
34 |
49 |
49 |
44 |
46 |
55 |
38 |
48 |
44 |
55 |
54 |
53 |
43 |
59 |
50 |
58 |
61 |
35 |
49 |
57 |
61 |
65 |
38 |
51 |
56 |
68 |
60 |
36 |
45 |
43 |
51 |
31 |
38 |
44 |
43 |
51 |
39 |
41 |
39 |
44 |
33 |
27 |
44 |
44 |
28 |
53 |
43 |
49 |
57 |
22009 |
44 |
18 |
32 |
35 |
15 |
27 |
21 |
16 |
23 |
13 |
24 |
16 |
18 |
25 |
16 |
32 |
29 |
25 |
24 |
32 |
27 |
20 |
24 |
15 |
15 |
22 |
25 |
21 |
23 |
21 |
24 |
23 |
18 |
14 |
38 |
32 |
20 |
29 |
27 |
30 |
34 |
41 |
31 |
49 |
36 |
38 |
42 |
32 |
31 |
50 |
47 |
42 |
40 |
57 |
29 |
36 |
36 |
23 |
36 |
31 |
21 |
39 |
30 |
32 |
38 |
28 |
36 |
36 |
40 |
49 |
40 |
37 |
45 |
44 |
26 |
50 |
47 |
56 |
53 |
44 |
60 |
35 |
53 |
42 |
50 |
67 |
40 |
35 |
64 |
48 |
37 |
22010 |
5 |
1 |
4 |
3 |
2 |
5 |
4 |
6 |
2 |
6 |
9 |
8 |
5 |
3 |
1 |
1 |
3 |
4 |
9 |
6 |
8 |
6 |
2 |
6 |
4 |
6 |
5 |
5 |
6 |
9 |
4 |
6 |
8 |
4 |
4 |
6 |
7 |
10 |
3 |
8 |
6 |
7 |
11 |
10 |
9 |
5 |
10 |
15 |
10 |
7 |
6 |
7 |
9 |
5 |
9 |
10 |
12 |
9 |
11 |
11 |
10 |
13 |
10 |
18 |
19 |
6 |
13 |
14 |
13 |
13 |
10 |
19 |
5 |
5 |
8 |
15 |
11 |
13 |
11 |
7 |
7 |
8 |
9 |
7 |
11 |
5 |
9 |
7 |
10 |
17 |
15 |
22011 |
288 |
133 |
161 |
158 |
184 |
158 |
171 |
166 |
168 |
197 |
169 |
158 |
173 |
152 |
151 |
148 |
170 |
189 |
222 |
279 |
322 |
287 |
289 |
276 |
266 |
262 |
279 |
294 |
313 |
338 |
325 |
328 |
325 |
285 |
291 |
268 |
307 |
365 |
308 |
334 |
352 |
390 |
376 |
378 |
381 |
337 |
393 |
347 |
372 |
441 |
457 |
437 |
474 |
488 |
392 |
473 |
387 |
380 |
417 |
379 |
408 |
377 |
395 |
404 |
321 |
291 |
348 |
403 |
355 |
363 |
392 |
311 |
346 |
288 |
259 |
306 |
325 |
317 |
344 |
261 |
258 |
224 |
255 |
241 |
293 |
275 |
221 |
321 |
307 |
297 |
290 |
22012 |
69 |
44 |
32 |
54 |
48 |
49 |
59 |
49 |
57 |
32 |
45 |
45 |
44 |
47 |
50 |
68 |
57 |
70 |
46 |
52 |
66 |
55 |
37 |
48 |
49 |
59 |
68 |
101 |
83 |
101 |
113 |
107 |
123 |
106 |
131 |
87 |
117 |
112 |
102 |
110 |
116 |
135 |
112 |
123 |
117 |
106 |
129 |
111 |
90 |
151 |
111 |
103 |
130 |
140 |
113 |
131 |
114 |
115 |
105 |
91 |
80 |
80 |
76 |
115 |
66 |
90 |
84 |
101 |
107 |
75 |
70 |
87 |
65 |
69 |
84 |
84 |
81 |
113 |
89 |
101 |
83 |
90 |
72 |
87 |
84 |
96 |
92 |
88 |
83 |
78 |
100 |
22013 |
12 |
10 |
4 |
3 |
4 |
9 |
5 |
9 |
3 |
6 |
6 |
8 |
7 |
8 |
5 |
4 |
7 |
13 |
11 |
7 |
7 |
17 |
6 |
11 |
5 |
5 |
4 |
6 |
5 |
10 |
14 |
3 |
9 |
6 |
5 |
6 |
10 |
11 |
8 |
10 |
15 |
12 |
14 |
9 |
15 |
15 |
17 |
14 |
11 |
13 |
7 |
14 |
11 |
10 |
14 |
11 |
15 |
8 |
19 |
4 |
17 |
7 |
20 |
14 |
13 |
6 |
37 |
15 |
20 |
16 |
17 |
11 |
10 |
12 |
11 |
15 |
13 |
11 |
12 |
9 |
10 |
12 |
11 |
9 |
9 |
6 |
8 |
5 |
11 |
8 |
8 |
22014 |
2442 |
1556 |
1414 |
1611 |
1557 |
1605 |
1541 |
1601 |
1713 |
1747 |
1830 |
1762 |
1704 |
1557 |
1414 |
1712 |
1686 |
1873 |
2461 |
2647 |
2936 |
2769 |
2983 |
2550 |
2561 |
2489 |
2447 |
2772 |
2517 |
2992 |
2962 |
2701 |
3073 |
2829 |
3031 |
2941 |
2833 |
2684 |
2500 |
2873 |
2791 |
3003 |
2802 |
2975 |
3026 |
2859 |
3126 |
2648 |
2702 |
2816 |
2748 |
2915 |
2976 |
3184 |
2959 |
3101 |
2900 |
2671 |
2971 |
2717 |
2755 |
2620 |
2676 |
2748 |
2061 |
2006 |
2053 |
2478 |
2564 |
2659 |
2828 |
2576 |
2513 |
2442 |
2439 |
2944 |
2774 |
2770 |
2736 |
2852 |
2755 |
2708 |
2881 |
2745 |
2776 |
2500 |
2446 |
2919 |
2741 |
3071 |
2889 |
22015 |
5 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
3 |
3 |
1 |
3 |
3 |
3 |
4 |
3 |
3 |
4 |
4 |
2 |
5 |
7 |
4 |
5 |
6 |
3 |
4 |
3 |
4 |
8 |
3 |
2 |
5 |
3 |
3 |
5 |
2 |
1 |
0 |
4 |
8 |
4 |
5 |
5 |
8 |
4 |
6 |
5 |
10 |
8 |
6 |
4 |
7 |
7 |
3 |
13 |
9 |
6 |
10 |
7 |
7 |
8 |
6 |
6 |
7 |
6 |
7 |
7 |
6 |
11 |
6 |
5 |
9 |
5 |
12 |
8 |
11 |
5 |
12 |
10 |
10 |
9 |
9 |
11 |
10 |
4 |
8 |
13 |
11 |
10 |
8 |
22016 |
524 |
371 |
314 |
404 |
425 |
440 |
410 |
366 |
312 |
354 |
400 |
406 |
364 |
339 |
380 |
400 |
437 |
430 |
392 |
398 |
356 |
392 |
371 |
403 |
479 |
518 |
478 |
569 |
457 |
543 |
558 |
514 |
560 |
537 |
617 |
574 |
535 |
594 |
604 |
695 |
677 |
714 |
650 |
631 |
605 |
594 |
664 |
589 |
611 |
624 |
561 |
684 |
702 |
788 |
664 |
736 |
687 |
631 |
660 |
579 |
579 |
616 |
611 |
622 |
490 |
442 |
478 |
644 |
631 |
592 |
589 |
502 |
528 |
524 |
518 |
665 |
551 |
551 |
544 |
573 |
595 |
486 |
561 |
547 |
579 |
587 |
501 |
545 |
600 |
671 |
614 |
22017 |
69 |
47 |
40 |
32 |
34 |
43 |
37 |
52 |
46 |
53 |
47 |
54 |
57 |
35 |
35 |
55 |
52 |
42 |
54 |
52 |
50 |
58 |
41 |
42 |
49 |
49 |
57 |
50 |
50 |
119 |
98 |
109 |
93 |
107 |
100 |
91 |
86 |
123 |
81 |
103 |
127 |
132 |
102 |
100 |
103 |
94 |
109 |
84 |
100 |
73 |
90 |
103 |
95 |
94 |
94 |
114 |
134 |
84 |
108 |
87 |
101 |
110 |
117 |
111 |
100 |
79 |
103 |
99 |
103 |
89 |
81 |
65 |
69 |
69 |
66 |
74 |
98 |
110 |
86 |
92 |
83 |
104 |
83 |
94 |
106 |
104 |
88 |
122 |
112 |
117 |
132 |
22018 |
18 |
11 |
10 |
24 |
18 |
11 |
21 |
17 |
12 |
13 |
18 |
16 |
11 |
18 |
14 |
17 |
20 |
21 |
21 |
15 |
16 |
13 |
16 |
12 |
18 |
13 |
9 |
16 |
17 |
24 |
14 |
11 |
11 |
15 |
15 |
12 |
17 |
8 |
10 |
6 |
18 |
19 |
43 |
44 |
41 |
41 |
42 |
39 |
38 |
33 |
36 |
53 |
36 |
19 |
43 |
56 |
46 |
29 |
16 |
29 |
23 |
23 |
22 |
18 |
27 |
35 |
27 |
16 |
22 |
11 |
22 |
15 |
24 |
18 |
18 |
26 |
33 |
40 |
38 |
48 |
40 |
35 |
36 |
29 |
38 |
20 |
31 |
27 |
33 |
31 |
31 |
Top 5 delitos por municipio
En lo que va del año
mm<-unique(delitosQRO2020$Cve..Municipio)
mm<-mm[1:18]
top5<-as.data.frame(c("Primero","Segundo","Tercero","Cuarto","Quinto"))
for (i in 1:length(mm)){
mimu<-subset(delitosQRO2020,delitosQRO2020$Cve..Municipio==mm[i] & delitosQRO2020$Ano==losAnos[length(losAnos)])
a<-aggregate(mimu$value~mimu$Subtipo.de.delito,data = mimu, FUN = sum)
a<-as.data.frame(a)
names(a)<-c(nomMun[i],"Carpetas")
a<-a[order(a$Carpetas, decreasing = TRUE),]
top5<-cbind(top5,a[1:5,])
}
names(top5)[1]<-c("Posicion")
kable(top5,caption="Top 5 delitos en carpetas de investigación por municipio en lo que va del año ")
Top 5 delitos en carpetas de investigación por municipio en lo que va del año
34 |
Primero |
Otros robos |
66 |
Lesiones dolosas |
26 |
Violencia familiar |
18 |
Violencia familiar |
98 |
Otros robos |
118 |
Otros robos |
420 |
Otros robos |
75 |
Amenazas |
43 |
Amenazas |
46 |
Violencia familiar |
11 |
Otros robos |
327 |
Otros robos |
86 |
Otros robos |
7 |
Otros robos |
3342 |
Otros robos |
11 |
Otros robos |
609 |
Otros robos |
119 |
Lesiones dolosas |
30 |
6 |
Segundo |
Amenazas |
46 |
Violencia familiar |
17 |
Lesiones dolosas |
13 |
Otros robos |
48 |
Lesiones dolosas |
58 |
Fraude |
318 |
Violencia familiar |
44 |
Otros robos |
39 |
Otros robos |
40 |
Amenazas |
9 |
Narcomenudeo |
198 |
Lesiones dolosas |
79 |
Lesiones dolosas |
6 |
Robo de vehículo automotor |
1391 |
Violencia familiar |
9 |
Amenazas |
399 |
Amenazas |
83 |
Violencia familiar |
30 |
55 |
Tercero |
Violencia familiar |
46 |
Amenazas |
15 |
Otros delitos del Fuero Común |
10 |
Lesiones dolosas |
46 |
Otros delitos del Fuero Común |
41 |
Amenazas |
199 |
Lesiones dolosas |
36 |
Daño a la propiedad |
26 |
Violencia familiar |
39 |
Lesiones dolosas |
8 |
Lesiones dolosas |
164 |
Violencia familiar |
54 |
Otros delitos del Fuero Común |
6 |
Violencia familiar |
1379 |
Amenazas |
4 |
Lesiones dolosas |
376 |
Lesiones dolosas |
75 |
Amenazas |
18 |
25 |
Cuarto |
Lesiones dolosas |
45 |
Daño a la propiedad |
11 |
Amenazas |
8 |
Fraude |
40 |
Violencia familiar |
30 |
Lesiones dolosas |
169 |
Otros delitos del Fuero Común |
36 |
Otros delitos del Fuero Común |
26 |
Lesiones dolosas |
33 |
Otros robos |
8 |
Violencia familiar |
127 |
Narcomenudeo |
41 |
Violencia familiar |
6 |
Otros delitos del Fuero Común |
1344 |
Violación simple |
4 |
Violencia familiar |
260 |
Robo a casa habitación |
53 |
Otros robos |
15 |
30 |
Quinto |
Otros delitos del Fuero Común |
40 |
Otros robos |
11 |
Otros robos |
7 |
Amenazas |
37 |
Amenazas |
28 |
Otros delitos del Fuero Común |
147 |
Fraude |
34 |
Violencia familiar |
26 |
Fraude |
18 |
Acoso sexual |
3 |
Otros delitos del Fuero Común |
111 |
Amenazas |
38 |
Narcomenudeo |
3 |
Fraude |
1026 |
Fraude |
3 |
Robo de vehículo automotor |
224 |
Fraude |
49 |
Otros delitos del Fuero Común |
11 |
Top 5 municipal durante Junio
top5mes<-as.data.frame(c("Primero","Segundo","Tercero","Cuarto","Quinto"))
for (i in 1:length(mm)) {
mimume<-subset(delitosQRO2020,delitosQRO2020$Cve..Municipio==mm[i] & delitosQRO2020$Ano==2020 & delitosQRO2020$meses==esteMes)
a<-aggregate(mimume$value~mimume$Subtipo.de.delito,data = mimume, FUN = sum)
a<-as.data.frame(a)
names(a)<-c(nomMun[i],"Carpetas")
a<-a[order(a$Carpetas, decreasing = TRUE),]
top5mes<-cbind(top5mes,a[1:5,])
}
names(top5mes)[1]<-c("Posicion")
kable(top5mes,caption=paste0("Top 5 delitos en carpetas de investigación por municipio en ",esteMes))
Top 5 delitos en carpetas de investigación por municipio en Junio
6 |
Primero |
Amenazas |
13 |
Lesiones dolosas |
7 |
Fraude |
2 |
Lesiones dolosas |
8 |
Otros robos |
16 |
Otros robos |
36 |
Lesiones dolosas |
9 |
Lesiones dolosas |
9 |
Violencia familiar |
8 |
Lesiones dolosas |
4 |
Otros robos |
70 |
Lesiones dolosas |
17 |
Lesiones dolosas |
11 |
Otros robos |
397 |
Amenazas |
3 |
Otros robos |
82 |
Amenazas |
17 |
Violencia familiar |
8 |
34 |
Segundo |
Otros robos |
13 |
Violencia familiar |
4 |
Lesiones dolosas |
2 |
Violencia familiar |
8 |
Violencia familiar |
14 |
Otros delitos del Fuero Común |
32 |
Violencia familiar |
7 |
Otros robos |
9 |
Otros robos |
7 |
Despojo |
2 |
Lesiones dolosas |
35 |
Otros robos |
15 |
Otros delitos del Fuero Común |
6 |
Lesiones dolosas |
181 |
Otros robos |
2 |
Lesiones dolosas |
50 |
Lesiones dolosas |
13 |
Amenazas |
4 |
25 |
Tercero |
Lesiones dolosas |
12 |
Amenazas |
2 |
Violencia familiar |
2 |
Otros robos |
6 |
Lesiones dolosas |
9 |
Fraude |
24 |
Narcomenudeo |
5 |
Amenazas |
8 |
Amenazas |
6 |
Otros robos |
2 |
Amenazas |
33 |
Amenazas |
8 |
Amenazas |
5 |
Otros delitos del Fuero Común |
180 |
Daño a la propiedad |
1 |
Amenazas |
44 |
Otros robos |
13 |
Lesiones dolosas |
4 |
30 |
Cuarto |
Otros delitos del Fuero Común |
8 |
Otros robos |
2 |
Otros robos |
1 |
Abuso sexual |
5 |
Amenazas |
7 |
Lesiones dolosas |
24 |
Fraude |
4 |
Violencia familiar |
6 |
Lesiones dolosas |
3 |
Allanamiento de morada |
1 |
Robo de vehículo automotor |
28 |
Violencia familiar |
8 |
Otros robos |
3 |
Robo a negocio |
176 |
Otros delitos del Fuero Común |
1 |
Otros delitos del Fuero Común |
42 |
Robo a casa habitación |
13 |
Acoso sexual |
2 |
55 |
Quinto |
Violencia familiar |
5 |
Lesiones culposas |
1 |
Robo de ganado |
1 |
Amenazas |
4 |
Otros delitos del Fuero Común |
7 |
Robo a casa habitación |
19 |
Otros delitos del Fuero Común |
4 |
Otros delitos del Fuero Común |
5 |
Otros delitos del Fuero Común |
3 |
Amenazas |
1 |
Robo a casa habitación |
22 |
Otros delitos del Fuero Común |
7 |
Violencia familiar |
3 |
Robo de vehículo automotor |
141 |
Aborto |
0 |
Robo a casa habitación |
35 |
Otros delitos del Fuero Común |
7 |
Despojo |
2 |
Robo y robo con violencia
delitos3<-delitos2[delitos2$Modalidad=="Con violencia" | delitos2$Modalidad=="Sin violencia" | delitos2$Subtipo.de.delito=="Robo de maquinaria" | delitos2$Subtipo.de.delito== "Robo de vehículo automotor" ,]
cualArreglar<-unique(delitos3$Modalidad)
cualArreglar<-cualArreglar[3:length(cualArreglar)]
for (i in 1:length(cualArreglar)) {
x<-i%%2
if(x==0){
delitos3$Subtipo.de.delito[delitos3$Modalidad==cualArreglar[i]]<-sub("Sin violencia","", cualArreglar[i])
delitos3$Modalidad[delitos3$Modalidad==cualArreglar[i]]<-"Sin violencia"
}else{
delitos3$Subtipo.de.delito[delitos3$Modalidad==cualArreglar[i]]<-sub("Con violencia","", cualArreglar[i])
delitos3$Modalidad[delitos3$Modalidad==cualArreglar[i]]<-"Con violencia"
}
}
# esto es casi copia del primer modulo, delitos por estado
RobosPorEstadoAnual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos3,delitos3$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosPorEstadoAnual<-cbind(RobosPorEstadoAnual,mitab)
}
names(RobosPorEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
Robos por estado y año
kable(RobosPorEstadoAnual)
1 |
10719 |
11412 |
15205 |
15697 |
12988 |
10417 |
10103 |
5169 |
2 |
48838 |
48708 |
51385 |
40705 |
37180 |
27993 |
30839 |
16424 |
3 |
9113 |
11365 |
10797 |
10350 |
8625 |
5690 |
5068 |
2728 |
4 |
858 |
1091 |
883 |
981 |
1063 |
925 |
1732 |
2767 |
5 |
13140 |
10628 |
10438 |
8866 |
6654 |
6357 |
7136 |
3873 |
6 |
2986 |
7779 |
8336 |
8163 |
7547 |
6415 |
8048 |
3578 |
7 |
7930 |
8996 |
9160 |
9336 |
6410 |
3431 |
2839 |
1290 |
8 |
16139 |
13475 |
17366 |
16509 |
16186 |
12914 |
14426 |
7365 |
9 |
77435 |
81555 |
102714 |
123514 |
109431 |
77962 |
79544 |
37002 |
10 |
10363 |
9835 |
11158 |
10629 |
10060 |
8712 |
7755 |
3184 |
11 |
31655 |
35063 |
39809 |
42982 |
42732 |
34398 |
30811 |
15468 |
12 |
12600 |
11613 |
10286 |
8383 |
7564 |
5917 |
6200 |
3058 |
13 |
9866 |
11403 |
14400 |
14641 |
14873 |
11588 |
10774 |
6142 |
14 |
27501 |
58804 |
88606 |
85035 |
76247 |
53455 |
52079 |
23173 |
15 |
168652 |
149203 |
161155 |
167529 |
157281 |
136258 |
138845 |
69509 |
16 |
16001 |
16313 |
18262 |
18611 |
17239 |
13940 |
12917 |
5500 |
17 |
20564 |
19641 |
17686 |
17313 |
16301 |
15100 |
14830 |
7178 |
18 |
1468 |
795 |
584 |
1172 |
735 |
745 |
850 |
625 |
19 |
14534 |
19000 |
16877 |
15793 |
14235 |
16091 |
14218 |
8014 |
20 |
1737 |
9919 |
10887 |
12541 |
13153 |
10344 |
10719 |
5693 |
21 |
23166 |
21691 |
29621 |
32477 |
35887 |
25548 |
28538 |
14893 |
22 |
17633 |
22119 |
27020 |
27836 |
26816 |
22760 |
21867 |
11314 |
23 |
12652 |
7102 |
11441 |
14318 |
20050 |
15510 |
15692 |
7334 |
24 |
6033 |
7854 |
11850 |
13991 |
16495 |
12774 |
14108 |
8113 |
25 |
10115 |
8628 |
9885 |
8608 |
7155 |
6660 |
7535 |
4017 |
26 |
9997 |
16021 |
10456 |
7470 |
7291 |
9250 |
8929 |
4319 |
27 |
18091 |
23178 |
25469 |
25059 |
20167 |
12961 |
11927 |
5129 |
28 |
19273 |
15541 |
16175 |
14098 |
13019 |
8641 |
8813 |
4070 |
29 |
4736 |
4703 |
5360 |
4296 |
2822 |
2615 |
3003 |
1449 |
30 |
17841 |
16902 |
28262 |
23595 |
29887 |
22429 |
22697 |
10175 |
31 |
3625 |
2664 |
2218 |
2371 |
2625 |
583 |
352 |
190 |
32 |
7386 |
7047 |
7348 |
7733 |
7378 |
5892 |
6123 |
2987 |
Robos con violencia por estado y año
RobosConViolenciaPorEstadoAnual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos3,delitos3$Ano==losAnos[i] & delitos3$Modalidad=="Con violencia")
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosConViolenciaPorEstadoAnual<-cbind(RobosConViolenciaPorEstadoAnual,mitab)
}
names(RobosConViolenciaPorEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
kable(RobosConViolenciaPorEstadoAnual)
1 |
838 |
883 |
1122 |
1245 |
1198 |
976 |
870 |
458 |
2 |
9250 |
10360 |
12544 |
9908 |
10497 |
8316 |
10090 |
4683 |
3 |
698 |
827 |
1037 |
924 |
889 |
624 |
484 |
222 |
4 |
185 |
137 |
150 |
226 |
210 |
249 |
468 |
464 |
5 |
2221 |
1466 |
1471 |
1124 |
511 |
580 |
403 |
254 |
6 |
418 |
1061 |
1136 |
1015 |
447 |
131 |
129 |
48 |
7 |
5767 |
5701 |
5268 |
5528 |
3883 |
1519 |
889 |
445 |
8 |
2241 |
1592 |
1949 |
1562 |
1626 |
1501 |
1430 |
753 |
9 |
23710 |
21483 |
28456 |
42686 |
37550 |
24774 |
22490 |
9434 |
10 |
1890 |
1180 |
1001 |
1016 |
694 |
682 |
716 |
568 |
11 |
6549 |
8497 |
10257 |
12737 |
14903 |
13097 |
9900 |
4949 |
12 |
3383 |
4089 |
5530 |
4733 |
3655 |
2795 |
2662 |
1298 |
13 |
1390 |
2126 |
3634 |
4609 |
4830 |
3749 |
3786 |
1693 |
14 |
6376 |
7494 |
30525 |
28849 |
27472 |
21329 |
18879 |
7899 |
15 |
88064 |
58336 |
93723 |
97255 |
86549 |
75006 |
74788 |
37016 |
16 |
4207 |
5367 |
6884 |
7379 |
6971 |
5878 |
5303 |
2165 |
17 |
6736 |
5769 |
4967 |
4083 |
3510 |
4150 |
4357 |
2175 |
18 |
369 |
167 |
121 |
191 |
163 |
143 |
147 |
122 |
19 |
4148 |
5935 |
4398 |
3752 |
3072 |
2680 |
2575 |
1532 |
20 |
814 |
2758 |
3782 |
4683 |
4170 |
3587 |
3833 |
2179 |
21 |
9133 |
9249 |
14862 |
18552 |
19754 |
12691 |
12643 |
6603 |
22 |
3455 |
2927 |
2682 |
2718 |
2953 |
3117 |
2350 |
1428 |
23 |
1721 |
1419 |
2614 |
4297 |
5910 |
4405 |
3013 |
1113 |
24 |
1288 |
1590 |
2777 |
3396 |
3562 |
3181 |
3782 |
2301 |
25 |
3506 |
3454 |
4622 |
4669 |
3827 |
3265 |
3762 |
1920 |
26 |
2569 |
7642 |
4675 |
3213 |
3552 |
5288 |
5095 |
2350 |
27 |
9278 |
10331 |
10586 |
14303 |
11973 |
7440 |
4193 |
1610 |
28 |
5716 |
4894 |
5953 |
5173 |
4908 |
3474 |
3172 |
1578 |
29 |
1331 |
1590 |
2066 |
2101 |
1120 |
868 |
902 |
459 |
30 |
5171 |
5402 |
12911 |
11496 |
15880 |
9930 |
9070 |
3730 |
31 |
230 |
114 |
66 |
59 |
95 |
30 |
39 |
19 |
32 |
1871 |
1599 |
1775 |
1796 |
1710 |
1456 |
1741 |
892 |
Serie mensual de robos totales por Estado
RobosPorEstadoMensual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(delitos3,delitos3$Ano==losAnos[length(losAnos)] & delitos3$meses==losmeses[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosPorEstadoMensual<-cbind(RobosPorEstadoMensual,mitab)
}
names(RobosPorEstadoMensual)<-c("clave de la entidad",losmeses)
kable(RobosPorEstadoMensual)
1 |
834 |
796 |
893 |
866 |
871 |
909 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
2699 |
2534 |
2904 |
2693 |
2921 |
2673 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
416 |
443 |
461 |
449 |
459 |
500 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
468 |
436 |
470 |
496 |
393 |
504 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
661 |
610 |
741 |
483 |
648 |
730 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
762 |
525 |
495 |
518 |
565 |
713 |
0 |
0 |
0 |
0 |
0 |
0 |
7 |
232 |
213 |
255 |
196 |
200 |
194 |
0 |
0 |
0 |
0 |
0 |
0 |
8 |
1238 |
1182 |
1250 |
1160 |
1345 |
1190 |
0 |
0 |
0 |
0 |
0 |
0 |
9 |
5797 |
5872 |
6581 |
5946 |
6473 |
6333 |
0 |
0 |
0 |
0 |
0 |
0 |
10 |
537 |
503 |
487 |
580 |
457 |
620 |
0 |
0 |
0 |
0 |
0 |
0 |
11 |
2636 |
2435 |
2724 |
2456 |
2569 |
2648 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
532 |
469 |
538 |
518 |
524 |
477 |
0 |
0 |
0 |
0 |
0 |
0 |
13 |
976 |
994 |
1015 |
990 |
1085 |
1082 |
0 |
0 |
0 |
0 |
0 |
0 |
14 |
4016 |
3771 |
4013 |
3668 |
3762 |
3943 |
0 |
0 |
0 |
0 |
0 |
0 |
15 |
11154 |
10822 |
12398 |
11555 |
11866 |
11714 |
0 |
0 |
0 |
0 |
0 |
0 |
16 |
987 |
886 |
960 |
862 |
913 |
892 |
0 |
0 |
0 |
0 |
0 |
0 |
17 |
1225 |
1201 |
1229 |
1115 |
1187 |
1221 |
0 |
0 |
0 |
0 |
0 |
0 |
18 |
75 |
120 |
134 |
78 |
117 |
101 |
0 |
0 |
0 |
0 |
0 |
0 |
19 |
1279 |
1043 |
1288 |
1376 |
1423 |
1605 |
0 |
0 |
0 |
0 |
0 |
0 |
20 |
1046 |
855 |
930 |
929 |
992 |
941 |
0 |
0 |
0 |
0 |
0 |
0 |
21 |
2371 |
2242 |
2618 |
2308 |
2810 |
2544 |
0 |
0 |
0 |
0 |
0 |
0 |
22 |
1897 |
1713 |
2035 |
1838 |
1901 |
1930 |
0 |
0 |
0 |
0 |
0 |
0 |
23 |
1166 |
1157 |
1266 |
1256 |
1237 |
1252 |
0 |
0 |
0 |
0 |
0 |
0 |
24 |
1138 |
1179 |
1440 |
1222 |
1618 |
1516 |
0 |
0 |
0 |
0 |
0 |
0 |
25 |
579 |
585 |
684 |
692 |
754 |
723 |
0 |
0 |
0 |
0 |
0 |
0 |
26 |
694 |
743 |
823 |
708 |
723 |
628 |
0 |
0 |
0 |
0 |
0 |
0 |
27 |
860 |
849 |
931 |
856 |
813 |
820 |
0 |
0 |
0 |
0 |
0 |
0 |
28 |
639 |
634 |
774 |
689 |
665 |
669 |
0 |
0 |
0 |
0 |
0 |
0 |
29 |
266 |
233 |
250 |
213 |
250 |
237 |
0 |
0 |
0 |
0 |
0 |
0 |
30 |
1635 |
1678 |
1954 |
1640 |
1648 |
1620 |
0 |
0 |
0 |
0 |
0 |
0 |
31 |
23 |
21 |
31 |
36 |
39 |
40 |
0 |
0 |
0 |
0 |
0 |
0 |
32 |
494 |
460 |
471 |
454 |
533 |
575 |
0 |
0 |
0 |
0 |
0 |
0 |
Serie mensual de robos con violencia por Estado
RobosConViolenciaPorEstadoMensual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(delitos3,delitos3$Ano==losAnos[length(losAnos)] & delitos3$Modalidad=="Con violencia" & delitos3$meses==losmeses[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosConViolenciaPorEstadoMensual<-cbind(RobosConViolenciaPorEstadoMensual,mitab)
}
names(RobosConViolenciaPorEstadoMensual)<-c("clave de la entidad",losmeses)
kable(RobosConViolenciaPorEstadoMensual)
1 |
78 |
59 |
66 |
84 |
81 |
90 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
776 |
750 |
861 |
738 |
831 |
727 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
39 |
36 |
40 |
43 |
35 |
29 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
83 |
75 |
86 |
74 |
54 |
92 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
46 |
42 |
52 |
42 |
38 |
34 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
9 |
10 |
13 |
5 |
6 |
5 |
0 |
0 |
0 |
0 |
0 |
0 |
7 |
78 |
78 |
91 |
67 |
68 |
63 |
0 |
0 |
0 |
0 |
0 |
0 |
8 |
122 |
113 |
123 |
115 |
131 |
149 |
0 |
0 |
0 |
0 |
0 |
0 |
9 |
1673 |
1560 |
1657 |
1477 |
1563 |
1504 |
0 |
0 |
0 |
0 |
0 |
0 |
10 |
145 |
104 |
60 |
83 |
48 |
128 |
0 |
0 |
0 |
0 |
0 |
0 |
11 |
846 |
806 |
860 |
792 |
801 |
844 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
236 |
201 |
221 |
201 |
224 |
215 |
0 |
0 |
0 |
0 |
0 |
0 |
13 |
286 |
243 |
307 |
262 |
263 |
332 |
0 |
0 |
0 |
0 |
0 |
0 |
14 |
1481 |
1289 |
1328 |
1225 |
1325 |
1251 |
0 |
0 |
0 |
0 |
0 |
0 |
15 |
5910 |
6046 |
6667 |
6223 |
6266 |
5904 |
0 |
0 |
0 |
0 |
0 |
0 |
16 |
411 |
362 |
352 |
355 |
343 |
342 |
0 |
0 |
0 |
0 |
0 |
0 |
17 |
441 |
380 |
365 |
350 |
290 |
349 |
0 |
0 |
0 |
0 |
0 |
0 |
18 |
17 |
27 |
26 |
12 |
28 |
12 |
0 |
0 |
0 |
0 |
0 |
0 |
19 |
266 |
236 |
285 |
220 |
244 |
281 |
0 |
0 |
0 |
0 |
0 |
0 |
20 |
402 |
331 |
356 |
324 |
433 |
333 |
0 |
0 |
0 |
0 |
0 |
0 |
21 |
1064 |
978 |
1135 |
1057 |
1241 |
1128 |
0 |
0 |
0 |
0 |
0 |
0 |
22 |
259 |
234 |
262 |
226 |
222 |
225 |
0 |
0 |
0 |
0 |
0 |
0 |
23 |
194 |
203 |
181 |
188 |
181 |
166 |
0 |
0 |
0 |
0 |
0 |
0 |
24 |
371 |
312 |
329 |
264 |
554 |
471 |
0 |
0 |
0 |
0 |
0 |
0 |
25 |
278 |
294 |
317 |
365 |
330 |
336 |
0 |
0 |
0 |
0 |
0 |
0 |
26 |
411 |
401 |
470 |
366 |
371 |
331 |
0 |
0 |
0 |
0 |
0 |
0 |
27 |
252 |
268 |
279 |
299 |
267 |
245 |
0 |
0 |
0 |
0 |
0 |
0 |
28 |
303 |
252 |
308 |
235 |
237 |
243 |
0 |
0 |
0 |
0 |
0 |
0 |
29 |
83 |
68 |
87 |
74 |
70 |
77 |
0 |
0 |
0 |
0 |
0 |
0 |
30 |
639 |
646 |
736 |
570 |
553 |
586 |
0 |
0 |
0 |
0 |
0 |
0 |
31 |
4 |
3 |
3 |
5 |
2 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
32 |
193 |
123 |
136 |
140 |
149 |
151 |
0 |
0 |
0 |
0 |
0 |
0 |
Porcentaje de robos con violencia por mes
prvm<-RobosPorEstadoMensual
prvm[,2:13]<-round(RobosConViolenciaPorEstadoMensual[,2:13]/RobosPorEstadoMensual[,2:13]*100,2)
names(prvm)<-c("Entidad",levels(losmeses))
kable(prvm)
1 |
9.35 |
7.41 |
7.39 |
9.70 |
9.30 |
9.90 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
2 |
28.75 |
29.60 |
29.65 |
27.40 |
28.45 |
27.20 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
3 |
9.38 |
8.13 |
8.68 |
9.58 |
7.63 |
5.80 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
4 |
17.74 |
17.20 |
18.30 |
14.92 |
13.74 |
18.25 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
5 |
6.96 |
6.89 |
7.02 |
8.70 |
5.86 |
4.66 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
6 |
1.18 |
1.90 |
2.63 |
0.97 |
1.06 |
0.70 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
7 |
33.62 |
36.62 |
35.69 |
34.18 |
34.00 |
32.47 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
8 |
9.85 |
9.56 |
9.84 |
9.91 |
9.74 |
12.52 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
9 |
28.86 |
26.57 |
25.18 |
24.84 |
24.15 |
23.75 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
10 |
27.00 |
20.68 |
12.32 |
14.31 |
10.50 |
20.65 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
11 |
32.09 |
33.10 |
31.57 |
32.25 |
31.18 |
31.87 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
12 |
44.36 |
42.86 |
41.08 |
38.80 |
42.75 |
45.07 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
13 |
29.30 |
24.45 |
30.25 |
26.46 |
24.24 |
30.68 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
14 |
36.88 |
34.18 |
33.09 |
33.40 |
35.22 |
31.73 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
15 |
52.99 |
55.87 |
53.77 |
53.86 |
52.81 |
50.40 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
16 |
41.64 |
40.86 |
36.67 |
41.18 |
37.57 |
38.34 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
17 |
36.00 |
31.64 |
29.70 |
31.39 |
24.43 |
28.58 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
18 |
22.67 |
22.50 |
19.40 |
15.38 |
23.93 |
11.88 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
19 |
20.80 |
22.63 |
22.13 |
15.99 |
17.15 |
17.51 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
20 |
38.43 |
38.71 |
38.28 |
34.88 |
43.65 |
35.39 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
21 |
44.88 |
43.62 |
43.35 |
45.80 |
44.16 |
44.34 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
22 |
13.65 |
13.66 |
12.87 |
12.30 |
11.68 |
11.66 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
23 |
16.64 |
17.55 |
14.30 |
14.97 |
14.63 |
13.26 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
24 |
32.60 |
26.46 |
22.85 |
21.60 |
34.24 |
31.07 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
25 |
48.01 |
50.26 |
46.35 |
52.75 |
43.77 |
46.47 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
26 |
59.22 |
53.97 |
57.11 |
51.69 |
51.31 |
52.71 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
27 |
29.30 |
31.57 |
29.97 |
34.93 |
32.84 |
29.88 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
28 |
47.42 |
39.75 |
39.79 |
34.11 |
35.64 |
36.32 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
29 |
31.20 |
29.18 |
34.80 |
34.74 |
28.00 |
32.49 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
30 |
39.08 |
38.50 |
37.67 |
34.76 |
33.56 |
36.17 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
31 |
17.39 |
14.29 |
9.68 |
13.89 |
5.13 |
5.00 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
32 |
39.07 |
26.74 |
28.87 |
30.84 |
27.95 |
26.26 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
Porcentajes por mes a nivel nacional
t<-colSums(RobosPorEstadoMensual[,2:13])
k<-colSums(RobosConViolenciaPorEstadoMensual[,2:13])
z<-round(k/t*100,2)
names(z)<-losmeses
kable(z)
Enero |
35.26 |
Febrero |
35.02 |
Marzo |
34.05 |
Abril |
33.74 |
Mayo |
33.32 |
Junio |
32.29 |
Julio |
NaN |
Agosto |
NaN |
Septiembre |
NaN |
Octubre |
NaN |
Noviembre |
NaN |
Diciembre |
NaN |
Porcentaje de robos con violencia por estado y año
prv<-RobosPorEstadoAnual
prv[,2:ncol(RobosConViolenciaPorEstadoAnual)]<-round(RobosConViolenciaPorEstadoAnual[,2:ncol(RobosConViolenciaPorEstadoAnual)]/RobosPorEstadoAnual[,2:ncol(RobosConViolenciaPorEstadoAnual)]*100,2)
kable(prv)
1 |
7.82 |
7.74 |
7.38 |
7.93 |
9.22 |
9.37 |
8.61 |
8.86 |
2 |
18.94 |
21.27 |
24.41 |
24.34 |
28.23 |
29.71 |
32.72 |
28.51 |
3 |
7.66 |
7.28 |
9.60 |
8.93 |
10.31 |
10.97 |
9.55 |
8.14 |
4 |
21.56 |
12.56 |
16.99 |
23.04 |
19.76 |
26.92 |
27.02 |
16.77 |
5 |
16.90 |
13.79 |
14.09 |
12.68 |
7.68 |
9.12 |
5.65 |
6.56 |
6 |
14.00 |
13.64 |
13.63 |
12.43 |
5.92 |
2.04 |
1.60 |
1.34 |
7 |
72.72 |
63.37 |
57.51 |
59.21 |
60.58 |
44.27 |
31.31 |
34.50 |
8 |
13.89 |
11.81 |
11.22 |
9.46 |
10.05 |
11.62 |
9.91 |
10.22 |
9 |
30.62 |
26.34 |
27.70 |
34.56 |
34.31 |
31.78 |
28.27 |
25.50 |
10 |
18.24 |
12.00 |
8.97 |
9.56 |
6.90 |
7.83 |
9.23 |
17.84 |
11 |
20.69 |
24.23 |
25.77 |
29.63 |
34.88 |
38.07 |
32.13 |
32.00 |
12 |
26.85 |
35.21 |
53.76 |
56.46 |
48.32 |
47.24 |
42.94 |
42.45 |
13 |
14.09 |
18.64 |
25.24 |
31.48 |
32.47 |
32.35 |
35.14 |
27.56 |
14 |
23.18 |
12.74 |
34.45 |
33.93 |
36.03 |
39.90 |
36.25 |
34.09 |
15 |
52.22 |
39.10 |
58.16 |
58.05 |
55.03 |
55.05 |
53.86 |
53.25 |
16 |
26.29 |
32.90 |
37.70 |
39.65 |
40.44 |
42.17 |
41.05 |
39.36 |
17 |
32.76 |
29.37 |
28.08 |
23.58 |
21.53 |
27.48 |
29.38 |
30.30 |
18 |
25.14 |
21.01 |
20.72 |
16.30 |
22.18 |
19.19 |
17.29 |
19.52 |
19 |
28.54 |
31.24 |
26.06 |
23.76 |
21.58 |
16.66 |
18.11 |
19.12 |
20 |
46.86 |
27.81 |
34.74 |
37.34 |
31.70 |
34.68 |
35.76 |
38.28 |
21 |
39.42 |
42.64 |
50.17 |
57.12 |
55.05 |
49.68 |
44.30 |
44.34 |
22 |
19.59 |
13.23 |
9.93 |
9.76 |
11.01 |
13.70 |
10.75 |
12.62 |
23 |
13.60 |
19.98 |
22.85 |
30.01 |
29.48 |
28.40 |
19.20 |
15.18 |
24 |
21.35 |
20.24 |
23.43 |
24.27 |
21.59 |
24.90 |
26.81 |
28.36 |
25 |
34.66 |
40.03 |
46.76 |
54.24 |
53.49 |
49.02 |
49.93 |
47.80 |
26 |
25.70 |
47.70 |
44.71 |
43.01 |
48.72 |
57.17 |
57.06 |
54.41 |
27 |
51.29 |
44.57 |
41.56 |
57.08 |
59.37 |
57.40 |
35.16 |
31.39 |
28 |
29.66 |
31.49 |
36.80 |
36.69 |
37.70 |
40.20 |
35.99 |
38.77 |
29 |
28.10 |
33.81 |
38.54 |
48.91 |
39.69 |
33.19 |
30.04 |
31.68 |
30 |
28.98 |
31.96 |
45.68 |
48.72 |
53.13 |
44.27 |
39.96 |
36.66 |
31 |
6.34 |
4.28 |
2.98 |
2.49 |
3.62 |
5.15 |
11.08 |
10.00 |
32 |
25.33 |
22.69 |
24.16 |
23.23 |
23.18 |
24.71 |
28.43 |
29.86 |
posicionQRO2020<-length(prv[,ncol(prv)][prv[,ncol(prv)]>prv[,ncol(prv)][22]])+1
Querétaro es el estado numero 26 con más robos con violencia.
Porcentaje de robos con violencia por estado y mes
prvm<-RobosPorEstadoMensual
Los robos con más violencia en 2022 (Nacional)
losRobos<-as.data.frame(sort(unique(delitos3$Subtipo.de.delito)))
mods=unique(delitos3$Modalidad)
for (i in 1:length(mods)) {
a <-delitos3[delitos3$Ano==losAnos[length(losAnos)] & delitos3$Modalidad==mods[i],]
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
losRobos<-cbind(losRobos,b)
}
losRobos$total<-apply(losRobos[,2:3],MARGIN = 1,FUN = sum)
losRobos$cv<-round(losRobos[,2]/losRobos$total*100,2)
losRobos$sv<-round(losRobos[,3]/losRobos$total*100,2)
losRobos<-losRobos[order(losRobos$cv,decreasing = TRUE),]
names(losRobos)<-c("Subtipo",mods,"Total", paste0("Porcentaje con ",mods))
kable(losRobos)
7 |
Robo a transportista |
3717 |
544 |
4261 |
87.23 |
12.77 |
6 |
Robo a transeúnte en vía pública |
27114 |
8270 |
35384 |
76.63 |
23.37 |
18 |
Robo en transporte público individual |
938 |
425 |
1363 |
68.82 |
31.18 |
17 |
Robo en transporte público colectivo |
4139 |
2323 |
6462 |
64.05 |
35.95 |
3 |
Robo a institución bancaria |
57 |
37 |
94 |
60.64 |
39.36 |
5 |
Robo a transeúnte en espacio abierto al público |
1522 |
1579 |
3101 |
49.08 |
50.92 |
4 |
Robo a negocio |
20154 |
22104 |
42258 |
47.69 |
52.31 |
16 |
Robo en transporte individual |
3016 |
4589 |
7605 |
39.66 |
60.34 |
10 |
Robo de coche de 4 ruedas |
18670 |
32186 |
50856 |
36.71 |
63.29 |
15 |
Robo de tractores |
20 |
35 |
55 |
36.36 |
63.64 |
11 |
Robo de embarcaciones pequeñas y grandes |
3 |
7 |
10 |
30.00 |
70.00 |
14 |
Robo de motocicleta |
4679 |
12728 |
17407 |
26.88 |
73.12 |
1 |
Otros robos |
14580 |
76219 |
90799 |
16.06 |
83.94 |
13 |
Robo de herramienta industrial o agrícola |
31 |
192 |
223 |
13.90 |
86.10 |
2 |
Robo a casa habitación |
3231 |
26120 |
29351 |
11.01 |
88.99 |
8 |
Robo de autopartes |
406 |
9487 |
9893 |
4.10 |
95.90 |
12 |
Robo de ganado |
54 |
1579 |
1633 |
3.31 |
96.69 |
9 |
Robo de cables, tubos y otros objetos destinados a servicios públicos |
29 |
946 |
975 |
2.97 |
97.03 |
Los robos con más violencia en 2022 (Querétaro)
losRobosQro<-as.data.frame(sort(unique(delitos3$Subtipo.de.delito)))
mods=unique(delitos3$Modalidad)
for (i in 1:length(mods)) {
a <-delitos3[delitos3$Ano==losAnos[length(losAnos)] & delitos3$Clave_Ent==22 & delitos3$Modalidad==mods[i],]
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
losRobosQro<-cbind(losRobosQro,b)
}
losRobosQro$total<-apply(losRobosQro[,2:3],MARGIN = 1,FUN = sum)
losRobosQro$cv<-round(losRobosQro[,2]/losRobosQro$total*100,2)
losRobosQro$sv<-round(losRobosQro[,3]/losRobosQro$total*100,2)
losRobosQro<-losRobosQro[order(losRobosQro$cv,decreasing = TRUE),]
names(losRobosQro)<-c("Subtipo",mods,"Total", paste0("Porcentaje con ",mods))
kable(losRobosQro)
18 |
Robo en transporte público individual |
21 |
13 |
34 |
61.76 |
38.24 |
16 |
Robo en transporte individual |
124 |
103 |
227 |
54.63 |
45.37 |
6 |
Robo a transeúnte en vía pública |
391 |
350 |
741 |
52.77 |
47.23 |
17 |
Robo en transporte público colectivo |
31 |
35 |
66 |
46.97 |
53.03 |
5 |
Robo a transeúnte en espacio abierto al público |
15 |
23 |
38 |
39.47 |
60.53 |
4 |
Robo a negocio |
397 |
896 |
1293 |
30.70 |
69.30 |
10 |
Robo de coche de 4 ruedas |
329 |
1178 |
1507 |
21.83 |
78.17 |
2 |
Robo a casa habitación |
53 |
1156 |
1209 |
4.38 |
95.62 |
14 |
Robo de motocicleta |
19 |
492 |
511 |
3.72 |
96.28 |
8 |
Robo de autopartes |
3 |
273 |
276 |
1.09 |
98.91 |
1 |
Otros robos |
45 |
5308 |
5353 |
0.84 |
99.16 |
12 |
Robo de ganado |
0 |
57 |
57 |
0.00 |
100.00 |
13 |
Robo de herramienta industrial o agrícola |
0 |
1 |
1 |
0.00 |
100.00 |
15 |
Robo de tractores |
0 |
1 |
1 |
0.00 |
100.00 |
3 |
Robo a institución bancaria |
0 |
0 |
0 |
NaN |
NaN |
7 |
Robo a transportista |
0 |
0 |
0 |
NaN |
NaN |
9 |
Robo de cables, tubos y otros objetos destinados a servicios públicos |
0 |
0 |
0 |
NaN |
NaN |
11 |
Robo de embarcaciones pequeñas y grandes |
0 |
0 |
0 |
NaN |
NaN |
El futuro
Delitos para preocuparse en Agosto
Aquí se presentan los delitos que en promedio aumentan durante Agosto; hemos calculado el promedio de los logaritmos de la tasa por cada 100 mil habitantes de cada mes, de cada año, por cada delito. Presentamos los delitos que, en promedio, alcanzan su máximo en Agosto.
anos2<-unique(delitosQRO2020$Ano)
meses2<-unique(delitosQRO2020$meses)
canalDelitos<-catalogoDelitos[,1]
for(i in 1:length(meses2)){
mediamesEntodo<-c()
for(j in 1:length(catalogoDelitos[,1])){
delmes<-subset(delitosQRO2020,delitosQRO2020$meses==meses2[i] & delitosQRO2020$Subtipo.de.delito==catalogoDelitos[j,1])
delmesano<-aggregate(delmes$value~delmes$Ano, data = delmes, FUN = sum)
cuantos<-nrow(delmesano)-1
delmesano<-delmesano[1:cuantos,]
pobs<-ent[22,2:(2+cuantos-1)]
pobs<-t(pobs)
delmesano$pob<-NA
delmesano$tasa<-NA
delmesano$logtasa<-NA
delmesano$pob<-pobs[,1]
delmesano$tasa<-(delmesano[,2])/delmesano$pob*100000
delmesano$logtasa<-log(delmesano$tasa+1)
mimedia<-mean(delmesano$logtasa)
miEE<-1.96*(sd(delmesano$logtasa)/sqrt(cuantos))
mediamesEntodo<-c(mediamesEntodo,mimedia)
}
canalDelitos<-cbind(canalDelitos,as.numeric(mediamesEntodo))
}
canalDelitos<-as.data.frame(canalDelitos)
names(canalDelitos)<-c("Delito",levels(meses2))
for(i in 1:55){
for(j in 2:13){
canalDelitos[i,j]<-as.numeric(canalDelitos[i,j])
}
}
aumentan<-canalDelitos[c("Delito", esteMes,proximo)]
aumentan$aumentan<-NA
aumentan$max<-NA
aumentan$max<-apply(canalDelitos[,2:13],1, max)
aumentan$aumentan<-aumentan[,3]>aumentan[,2]
aumentan$enMaximoAnual<-NA
aumentan$enMaximoAnual<-aumentan$enMaximoAnual<-aumentan$max==aumentan[c(proximo)]
alerta<-cbind(aumentan$Delito[aumentan$enMaximoAnual==TRUE & aumentan$enMaximoAnual!=0],aumentan[aumentan$enMaximoAnual ==TRUE & aumentan$enMaximoAnual!=0,3])
alerta<-as.data.frame(alerta)
names(alerta)<-c("Delito","logTasaPromedio")
miAlerta<-alerta[alerta$logTasaPromedio!=0,]
if(nrow(miAlerta)!=0){
kable(miAlerta[,1], caption=paste0("Delitos que, en promedio, aumentan en ",proximo))
cual<-miAlerta$Delito[miAlerta$logTasaPromedio==max(miAlerta$logTasaPromedio)]}else{cual=c()}
Comportamiento mensual del delito de mayor riesgo (Amenazas)
if(length(cual)!=0){
esteDelito<-subset(delitosQRO2020,delitosQRO2020$Subtipo.de.delito==cual)
mismeses2<-as.data.frame(levels(delitosQRO2020$meses))
for (i in 1:length(anos2)) {
miano1<-subset(esteDelito,esteDelito$Ano==anos2[i])
aggregate(miano1$value~miano1$meses,miano1,sum)
mismeses2<-cbind(mismeses2,as.data.frame(aggregate(miano1$value~miano1$meses,miano1,sum))[2])
}
names(mismeses2)<-c("Mes",paste0("año ",anos2))
kable(mismeses2, caption = paste0("Serie de tiempo anual y mensual para ",cual))
}
Serie de tiempo anual y mensual para Amenazas
Enero |
78 |
71 |
169 |
233 |
319 |
342 |
296 |
301 |
Febrero |
81 |
67 |
186 |
210 |
307 |
390 |
308 |
261 |
Marzo |
95 |
89 |
176 |
287 |
333 |
380 |
407 |
371 |
Abril |
94 |
106 |
189 |
263 |
376 |
251 |
429 |
357 |
Mayo |
88 |
113 |
294 |
315 |
417 |
201 |
374 |
433 |
Junio |
85 |
189 |
231 |
276 |
344 |
278 |
365 |
337 |
Julio |
103 |
187 |
208 |
315 |
399 |
322 |
352 |
0 |
Agosto |
98 |
223 |
281 |
297 |
391 |
350 |
311 |
0 |
Septiembre |
95 |
159 |
241 |
273 |
308 |
333 |
316 |
0 |
Octubre |
102 |
184 |
245 |
341 |
367 |
324 |
254 |
0 |
Noviembre |
103 |
148 |
230 |
278 |
353 |
271 |
271 |
0 |
Diciembre |
86 |
174 |
215 |
273 |
328 |
281 |
310 |
0 |
Acumulados anuales por delito, en Querétaro
delitosQro<-delitos2[delitos2$Clave_Ent=="22",]
delitoAnualQueretaro<-as.data.frame(losDelitos)
names(delitoAnualQueretaro)[1]<-c("Delito")
for(i in 1:length(losAnos)){
x=as.data.frame(aggregate(delitosQro$value ~delitosQro$Subtipo.de.delito,delitoAnualQueretaro,sum, subset=delitosQro$Ano==losAnos[i] ))
names(x)<-c("Delito", paste("AÑO ", losAnos[i]))
delitoAnualQueretaro<-merge(delitoAnualQueretaro,x,by=c("Delito"))
}
kable(delitoAnualQueretaro)
Aborto |
5 |
10 |
12 |
14 |
22 |
28 |
37 |
21 |
Abuso de confianza |
459 |
564 |
635 |
622 |
681 |
587 |
715 |
316 |
Abuso sexual |
250 |
294 |
358 |
413 |
540 |
551 |
678 |
387 |
Acoso sexual |
23 |
40 |
44 |
128 |
294 |
599 |
691 |
410 |
Allanamiento de morada |
101 |
149 |
172 |
232 |
315 |
296 |
274 |
163 |
Amenazas |
1108 |
1710 |
2665 |
3361 |
4242 |
3723 |
3993 |
2060 |
Contra el medio ambiente |
3 |
4 |
2 |
2 |
3 |
3 |
3 |
1 |
Corrupción de menores |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
Daño a la propiedad |
1982 |
3862 |
5200 |
5421 |
3660 |
1360 |
1526 |
785 |
Delitos cometidos por servidores públicos |
3 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
Despojo |
483 |
511 |
597 |
720 |
850 |
861 |
912 |
437 |
Electorales |
5 |
7 |
2 |
49 |
0 |
16 |
60 |
0 |
Evasión de presos |
1 |
0 |
0 |
2 |
3 |
0 |
2 |
0 |
Extorsión |
6 |
11 |
18 |
104 |
259 |
242 |
257 |
126 |
Falsedad |
37 |
95 |
79 |
88 |
101 |
88 |
144 |
94 |
Falsificación |
642 |
556 |
438 |
580 |
695 |
300 |
213 |
107 |
Feminicidio |
8 |
1 |
1 |
7 |
10 |
11 |
9 |
4 |
Fraude |
1486 |
1692 |
2034 |
2119 |
2480 |
2764 |
3500 |
1864 |
Homicidio culposo |
316 |
303 |
296 |
310 |
327 |
283 |
347 |
161 |
Homicidio doloso |
131 |
118 |
175 |
180 |
176 |
182 |
185 |
74 |
Hostigamiento sexual |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
27 |
Incesto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incumplimiento de obligaciones de asistencia familiar |
812 |
829 |
848 |
663 |
697 |
555 |
549 |
374 |
Lesiones culposas |
541 |
784 |
793 |
893 |
972 |
847 |
1023 |
487 |
Lesiones dolosas |
2804 |
3572 |
4734 |
5194 |
5690 |
4797 |
4768 |
2199 |
Narcomenudeo |
224 |
826 |
942 |
1149 |
1579 |
1134 |
1154 |
646 |
Otros delitos contra el patrimonio |
33 |
28 |
38 |
37 |
48 |
47 |
49 |
13 |
Otros delitos contra la familia |
66 |
112 |
164 |
211 |
207 |
201 |
256 |
131 |
Otros delitos contra la sociedad |
108 |
124 |
132 |
132 |
183 |
400 |
479 |
170 |
Otros delitos del Fuero Común |
1513 |
2561 |
3532 |
4294 |
4922 |
4063 |
4087 |
2106 |
Otros delitos que atentan contra la libertad personal |
33 |
26 |
44 |
30 |
52 |
105 |
139 |
101 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
53 |
45 |
47 |
29 |
51 |
54 |
51 |
19 |
Otros delitos que atentan contra la vida y la integridad corporal |
659 |
626 |
764 |
767 |
940 |
1022 |
1333 |
531 |
Otros robos |
6668 |
7819 |
9879 |
10493 |
11495 |
9967 |
10441 |
5353 |
Rapto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a casa habitación |
2417 |
3282 |
3852 |
3929 |
3409 |
2735 |
2415 |
1209 |
Robo a institución bancaria |
3 |
3 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a negocio |
1850 |
2613 |
3363 |
3052 |
3379 |
3196 |
2334 |
1293 |
Robo a transeúnte en espacio abierto al público |
8 |
54 |
203 |
217 |
158 |
105 |
85 |
38 |
Robo a transeúnte en vía pública |
1129 |
1655 |
1976 |
2000 |
1614 |
1432 |
1342 |
741 |
Robo a transportista |
141 |
125 |
98 |
104 |
0 |
0 |
0 |
0 |
Robo de autopartes |
428 |
445 |
808 |
1094 |
831 |
654 |
544 |
276 |
Robo de ganado |
319 |
266 |
224 |
205 |
258 |
173 |
167 |
57 |
Robo de maquinaria |
20 |
23 |
22 |
16 |
7 |
15 |
10 |
2 |
Robo de vehículo automotor |
3872 |
4880 |
5738 |
6165 |
4922 |
3631 |
3767 |
2018 |
Robo en transporte individual |
236 |
306 |
355 |
375 |
357 |
380 |
324 |
227 |
Robo en transporte público colectivo |
487 |
593 |
400 |
92 |
251 |
340 |
307 |
66 |
Robo en transporte público individual |
55 |
55 |
102 |
94 |
135 |
132 |
131 |
34 |
Secuestro |
19 |
12 |
11 |
12 |
8 |
9 |
15 |
7 |
Tráfico de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Trata de personas |
2 |
8 |
14 |
9 |
2 |
3 |
4 |
4 |
Violación equiparada |
29 |
49 |
81 |
73 |
102 |
170 |
254 |
154 |
Violación simple |
294 |
285 |
296 |
262 |
445 |
395 |
429 |
194 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
2 |
2 |
4 |
1 |
7 |
18 |
150 |
286 |
Violencia familiar |
942 |
965 |
1186 |
1865 |
3135 |
3552 |
3784 |
2370 |
Movilidad
gmr=read.csv("Global_Mobility_Report_12_2020.csv",header = T,sep = ",")
gmrMex=gmr[gmr$country_region=="Mexico",]
gmrQro<-gmrMex[gmrMex$sub_region_1==unique(gmrMex$sub_region_1)[22],]
gmrQro$mes<-substr(x = gmrQro$date,start = 6,7)
movMesQro<-as.data.frame(aggregate(gmrQro$residential_percent_change_from_baseline~gmrQro$mes,gmrQro,mean))
kable(movMesQro)
02 |
-1.600000 |
03 |
6.354839 |
04 |
21.333333 |
05 |
21.064516 |
06 |
16.333333 |
07 |
13.000000 |
08 |
11.032258 |
09 |
11.166667 |
10 |
9.935484 |
11 |
10.233333 |
12 |
10.444444 |
delitosQueretaro <-delitos2 %>% filter(Clave_Ent==22) %>% mutate(trimestre=
paste0(Ano,
"-",
ifelse(meses %in% unique(meses)[1:3],1,ifelse(meses %in% unique(meses)[4:6],2,ifelse(meses %in% unique(meses)[7:9],3,ifelse(meses %in% unique(meses)[01:12],4,NA))))
)
)%>% group_by(trimestre) %>% summarise(delitosEnElTrimestre=sum(value))%>%data.frame(.)
kable(delitosQueretaro)
2015-1 |
7693 |
2015-2 |
8143 |
2015-3 |
8275 |
2015-4 |
8706 |
2016-1 |
7993 |
2016-2 |
9922 |
2016-3 |
12704 |
2016-4 |
12281 |
2017-1 |
12318 |
2017-2 |
13494 |
2017-3 |
13671 |
2017-4 |
13896 |
2018-1 |
13577 |
2018-2 |
14767 |
2018-3 |
15013 |
2018-4 |
14452 |
2019-1 |
14870 |
2019-2 |
15909 |
2019-3 |
15231 |
2019-4 |
14505 |
2020-1 |
14190 |
2020-2 |
11105 |
2020-3 |
13491 |
2020-4 |
13240 |
2021-1 |
12903 |
2021-2 |
13906 |
2021-3 |
13431 |
2021-4 |
13704 |
2022-1 |
13323 |
2022-2 |
14820 |
2022-3 |
0 |
2022-4 |
0 |
estados=data.frame(estados=unique(delitos2$Clave_Ent))
estados$nombre=NA
for (i in 1:nrow(estados)) {
estados$nombre[i]<-unique(delitos2$Entidad[delitos2$Clave_Ent==estados$estados[i]])
}
gobierna2020= factor(c(1,2,1,3,3,3,2,1,2,1,1,3,3,4,3,5,6,1,7,3,2,1,5,3,3,3,2,1,3,2,1,3),levels = c(1,2,3,4,5,6,7), labels = c("PAN","Morena","PRI","Movimiento ciudadano","PRD","Encuentro social","Independiente"))
estados$gobierna2020=gobierna2020
estados$gobierna2020=gobierna2020
aborto=as.data.frame(aggregate(delitos2$value~delitos2$Clave_Ent,delitos2,sum,subset = delitos2$Subtipo.de.delito=="Aborto" & (delitos2$Ano==2020|delitos2$Ano==2019)) )[2]
names(aborto)<-c("Aborto")
estados=cbind(estados,aborto)
estados=cbind(estados,ent$year2020)
estados$tasaAborto=(estados$Aborto+1)/(estados$`ent$year2020`*100000)
logtasaAborto=log(estados$tasaAborto)
estados$logtasaAborto=logtasaAborto
t.test(x = estados$logtasaAborto[estados$gobierna2020=="PAN"],y =estados$logtasaAborto[estados$gobierna2020!="PAN"],paired = F)
##
## Welch Two Sample t-test
##
## data: estados$logtasaAborto[estados$gobierna2020 == "PAN"] and estados$logtasaAborto[estados$gobierna2020 != "PAN"]
## t = 0.050284, df = 11.367, p-value = 0.9608
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.173222 1.228304
## sample estimates:
## mean of x mean of y
## -23.61699 -23.64453
t.test(x = estados$tasaAborto[estados$gobierna2020=="PAN"],y =estados$tasaAborto[estados$gobierna2020!="PAN"],paired = F)
##
## Welch Two Sample t-test
##
## data: estados$tasaAborto[estados$gobierna2020 == "PAN"] and estados$tasaAborto[estados$gobierna2020 != "PAN"]
## t = 0.57717, df = 12.695, p-value = 0.5739
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.346334e-11 1.095821e-10
## sample estimates:
## mean of x mean of y
## 1.120132e-10 8.895383e-11
wilcox.test(x = estados$tasaAborto[estados$gobierna2020=="PAN"],y =estados$tasaAborto[estados$gobierna2020!="PAN"],paired = F,conf.int = .95)
##
## Wilcoxon rank sum exact test
##
## data: estados$tasaAborto[estados$gobierna2020 == "PAN"] and estados$tasaAborto[estados$gobierna2020 != "PAN"]
## W = 107, p-value = 0.9018
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -4.379211e-11 9.599250e-11
## sample estimates:
## difference in location
## 3.598757e-12
apan=median(estados$tasaAborto[estados$gobierna2020=="PAN"])
aotros=median(estados$tasaAborto[estados$gobierna2020!="PAN"])
barplot(height =c(apan,aotros),names.arg = c("PAN","Otros"),main = "Mediana de las tasas de aborto por cada 100 mil habitantes \n entre estados con gobiernos panistas y no panistas" )

# Los estados panistas tienen tasas de aborto por cada 100 mil habitantes mayores que los estados no panistas, aunque la diferencia no es estadísticamente significativa
library(dplyr)
aborto <-subset(delitos2, delitos2$Subtipo.de.delito=="Aborto" & delitos2$Ano==2020)
abortomunEst<-data.frame(aggregate(aborto$value~(aborto$Clave_Ent+aborto$Cve..Municipio), data = aborto,FUN = sum))
names(abortomunEst)<-c("estados","ClaveMun","abortos")
eds<-estados[,c(1,2,3)]
abortomunEst<-left_join(x = abortomunEst,y = eds, by="estados")
popMuni<-data.frame(aggregate(pop$POB~pop$CLAVE,data = pop,subset = pop$ANO==2020, FUN = sum))
names(popMuni)<-c("ClaveMun","pob")
popMuni$ClaveMun<-as.numeric(popMuni$ClaveMun)
abortomunEst<-left_join(x = popMuni,y = abortomunEst,by="ClaveMun")
abortomunEst2<-abortomunEst
abortomunEst2$tasa<-abortomunEst2$abortos/abortomunEst2$pob*100000
abortomunEst2$abortosMasUno<-abortomunEst2$abortos+1
abortomunEst2$tasa2<-abortomunEst2$abortosMasUno/abortomunEst2$pob
#Mediana de no panistas
summary(abortomunEst2$tasa[abortomunEst2$gobierna2020!="PAN"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.1956 0.0000 32.1337
#Mediana de panistas
summary(abortomunEst2$tasa[abortomunEst2$gobierna2020=="PAN"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.3363 0.0000 14.8610
#abortomunEst2$logtasa2<-log(abortomunEst2$tasa2)
wilcox.test(x=abortomunEst2$tasa[abortomunEst2$gobierna2020=="PAN"],y = abortomunEst2$tasa[abortomunEst2$gobierna2020!="PAN"],paired = F)
##
## Wilcoxon rank sum test with continuity correction
##
## data: abortomunEst2$tasa[abortomunEst2$gobierna2020 == "PAN"] and abortomunEst2$tasa[abortomunEst2$gobierna2020 != "PAN"]
## W = 391027, p-value = 0.003765
## alternative hypothesis: true location shift is not equal to 0
#barplot(height = c(mean(abortomunEst2$tasa[abortomunEst2$gobierna2020=="PAN"]),mean(abortomunEst2$tasa[abortomunEst2$gobierna2020!="PAN"])),main = "Promedio municipal de carpetas de investigación iniciadas \n por aborto, por cada 100 mil habitantes en 2020,\n según partido en el gobierno estatal",names.arg = c("PAN","Otros"))
#t.test(x = abortomunEst2$logtasa[abortomunEst2$gobierna2020=="PAN"],y = abortomunEst2$logtasa[abortomunEst2$gobierna2020!="PAN"],paired = F,var.equal = F)
FEDERALES
names(federales)<-toupper(names(federales))
federales<-melt(data = federales,id.vars = names(federales)[1:6],measure.vars = names(federales)[7:18],variable.name = "MES")
federales$value[is.na(federales$value)]<-0
names(federales)[1]<-"YEAR"
federalesQro<-federales%>%filter(INEGI==22)
misanos=unique(federales$YEAR)
misanos[length(misanos)]
## [1] 2022
Delitos federales distintos de contra la salud, en Querétaro 2022
federalesQrNoSalud=federalesQro%>%filter(CONCEPTO!="CONTRA LA SALUD" & !is.na(value) & YEAR==misanos[length(misanos)])
fns=tapply(X = federalesQrNoSalud$value,INDEX = federalesQrNoSalud[,c("TIPO","MES")],FUN = sum)
kable(fns, caption="Delitos federales distintos de contra la salud")
Delitos federales distintos de contra la salud
CODIGO FISCAL DE LA FEDERACION (C.F.F.) |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
COMETIDOS POR SERVIDORES PUBLICOS |
2 |
3 |
2 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
CONTRA EL AMBIENTE Y LA GESTION AMBIENTAL |
1 |
1 |
2 |
1 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
CONTRA LA INTEGRIDAD CORPORAL |
1 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
CONTRA LA SALUD |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
CONTRA LA SALUD EN SU MODALIDAD DE NARCOMENUDEO |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
ELECTORALES |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
EN MATERIA DE DERECHOS DE AUTOR |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
FALSEDAD, TITULO DECIMO TERCERO |
2 |
2 |
10 |
6 |
4 |
9 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY DE LA PROPIEDAD INDUSTRIAL (L.P.I.) |
1 |
1 |
1 |
1 |
3 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY DE MIGRACION |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY DE VIAS GENERALES DE COMUNICACION (L.V.G.C.) |
4 |
4 |
8 |
12 |
10 |
4 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY FEDERAL DE ARMAS DE FUEGO Y EXPLOSIVOS (L.F.A.F.E.) |
33 |
30 |
43 |
23 |
30 |
40 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY FEDERAL DEL DERECHO DE AUTOR (L.F.D.A.) |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY FEDERAL PARA PREVENIR Y SANCIONAR LOS DELITOS COMETIDOS EN MATERIA DE HIDROCARBUROS (L.F.P.S.D.C.M.H.) |
4 |
8 |
13 |
10 |
7 |
8 |
0 |
0 |
0 |
0 |
0 |
0 |
LEY GENERAL EN MATERIA DE DELITOS ELECTORALES (L.G.M.D.E.) |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
LEYES DE INSTITUCIONES DE CREDITO, INVERSION, FIANZAS Y SEGUROS |
8 |
7 |
10 |
6 |
3 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
OTRAS LEYES ESPECIALES |
3 |
6 |
4 |
9 |
6 |
6 |
0 |
0 |
0 |
0 |
0 |
0 |
OTROS DELITOS DEL C.P.F. |
1 |
2 |
1 |
5 |
3 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
OTROS DELITOS PREVISTOS EN LA L.F.C.D.O. |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
OTROS DELITOS PREVISTOS EN LA L.G.S. |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
PATRIMONIALES |
71 |
85 |
114 |
76 |
82 |
89 |
0 |
0 |
0 |
0 |
0 |
0 |
VIAS DE COMUNICACION Y CORRESPONDENCIA |
2 |
5 |
1 |
2 |
0 |
4 |
0 |
0 |
0 |
0 |
0 |
0 |
Delitos contra la salud en Querétaro 2022
federalesQroSalud2021=federalesQro%>%filter(CONCEPTO=="CONTRA LA SALUD" & !is.na(value) & YEAR==misanos[length(misanos)])
fs=tapply(X = federalesQroSalud2021$value,INDEX = federalesQroSalud2021[,c("TIPO","MES")],FUN = sum)
kable(fs,caption="Delitos contra la salud")
Delitos contra la salud
COMERCIO |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
OTROS |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
POSESION |
11 |
16 |
16 |
8 |
8 |
7 |
0 |
0 |
0 |
0 |
0 |
0 |
PRODUCCION |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
SUMINISTRO |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
TRAFICO |
13 |
9 |
11 |
9 |
5 |
11 |
0 |
0 |
0 |
0 |
0 |
0 |
TRANSPORTE |
7 |
12 |
11 |
10 |
13 |
10 |
0 |
0 |
0 |
0 |
0 |
0 |
Delitos contra la salud en el año, por entidad federativa 2022
fsalud=federales%>%filter(YEAR==misanos[length(misanos)] & CONCEPTO=="CONTRA LA SALUD")
saludenElAno=tapply(X = fsalud$value,INDEX = fsalud[,c("ENTIDAD","TIPO")],FUN = sum, na.rm=T)
kable(saludenElAno, caption="Delitos contra la salud en el año, por entidad federativa")
Delitos contra la salud en el año, por entidad federativa
AGUASCALIENTES |
0 |
0 |
42 |
0 |
0 |
7 |
13 |
BAJA CALIFORNIA |
4 |
9 |
279 |
3 |
0 |
53 |
56 |
BAJA CALIFORNIA SUR |
0 |
1 |
29 |
1 |
0 |
16 |
58 |
CAMPECHE |
0 |
0 |
2 |
0 |
0 |
0 |
4 |
CHIAPAS |
0 |
0 |
2 |
0 |
0 |
14 |
23 |
CHIHUAHUA |
6 |
25 |
122 |
0 |
0 |
12 |
7 |
CIUDAD DE MEXICO |
4 |
1 |
37 |
0 |
0 |
130 |
6 |
COAHUILA |
5 |
0 |
25 |
1 |
0 |
12 |
13 |
COLIMA |
17 |
2 |
88 |
1 |
0 |
9 |
2 |
DURANGO |
4 |
15 |
14 |
2 |
0 |
5 |
8 |
EXTRANJERO |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
GUANAJUATO |
5 |
0 |
112 |
0 |
0 |
5 |
9 |
GUERRERO |
7 |
29 |
14 |
2 |
0 |
6 |
0 |
HIDALGO |
1 |
5 |
16 |
1 |
0 |
7 |
4 |
JALISCO |
17 |
12 |
107 |
11 |
0 |
45 |
21 |
MEXICO |
17 |
3 |
49 |
2 |
0 |
54 |
15 |
MICHOACAN |
5 |
4 |
58 |
7 |
2 |
19 |
14 |
MORELOS |
1 |
0 |
16 |
0 |
0 |
2 |
0 |
NAYARIT |
0 |
2 |
10 |
0 |
0 |
1 |
0 |
NUEVO LEON |
25 |
0 |
76 |
0 |
3 |
40 |
26 |
OAXACA |
3 |
0 |
6 |
0 |
0 |
16 |
7 |
PUEBLA |
3 |
1 |
28 |
2 |
1 |
2 |
0 |
QUERETARO |
3 |
1 |
66 |
1 |
0 |
58 |
63 |
QUINTANA ROO |
15 |
0 |
35 |
3 |
0 |
12 |
14 |
SAN LUIS POTOSI |
6 |
1 |
28 |
0 |
0 |
9 |
18 |
SINALOA |
2 |
15 |
38 |
12 |
0 |
29 |
91 |
SONORA |
12 |
6 |
113 |
3 |
0 |
44 |
69 |
TABASCO |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
TAMAULIPAS |
0 |
0 |
17 |
1 |
0 |
9 |
12 |
TLAXCALA |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
VERACRUZ |
2 |
1 |
32 |
0 |
0 |
9 |
2 |
YUCATAN |
17 |
0 |
17 |
0 |
0 |
7 |
6 |
ZACATECAS |
0 |
5 |
12 |
0 |
0 |
0 |
0 |
sa=data.frame(saludenElAno)%>%mutate(ENTIDAD=rownames(saludenElAno))
comercio=length(sa$COMERCIO[sa$COMERCIO>sa$COMERCIO[sa$ENTIDAD=="QUERETARO"]])+1
trafico=length(sa$TRAFICO[sa$TRAFICO>sa$TRAFICO[sa$ENTIDAD=="QUERETARO"]])+1
transporte=length(sa$TRANSPORTE[sa$TRANSPORTE>sa$TRANSPORTE[sa$ENTIDAD=="QUERETARO"]])+1
posesion=length(sa$POSESION[sa$POSESION>sa$POSESION[sa$ENTIDAD=="QUERETARO"]])+1
produccion=length(sa$PRODUCCION[sa$PRODUCCION>sa$PRODUCCION[sa$ENTIDAD=="QUERETARO"]])+1
suministro=length(sa$SUMINISTRO[sa$SUMINISTRO>sa$SUMINISTRO[sa$ENTIDAD=="QUERETARO"]])+1
A nivel nacional, en el acumulado anual, Querétaro ocupa el lugar 17 en comercio; el lugar 2 en tráfico; el lugar 3 en transporte; el lugar 8 en posesión; el lugar 11 en producción y el lugar 4 en suministro de narcóticos.