Este documento hace públicos los procedimientos y los datos utilizados para analizar la incidencia delictiva en Querétaro, en arreglo con los datos del SESNSP.
Te indicamos dónde descargar los datos, y cómo procesarlos en R. La base de datos es demasiado grande para abrirse en excel, así que necesitarás un software estadístico.
Resumen
- Entre Junio y Julio, el delito en Querétaro creció en 1.43%, en tanto que a nivel nacional lo hizo en -3.46%. Querétaro es en este periodo el estado con la quinta tasa de crecimiento más alta.
- En el acumulado del año, al mes de julio Querétaro se mantiene como el sexto estado con la mayor tasa de carpetas de investigación inciadas por cada 100 mil habitantes. Considerando sólo al mes de Julio, ocupamos la posición número cinco.
3.Cuatro delitos alcanzaron su máximo histórico en julio en Querétaro:Abuso sexual, con 81 carpetas; Otros delitos que atentan contra la vida y la integridad corporal, con 129; Otros delitos contra la familia y Otros delitos que atentan contra la libertad personal, con 29 y 17 casos, respectivamente.
- Los delitos más frecuentes en julio:
-
Otros robos (926),
-
Lesiones dolosas (392),
-
Otros delitos del Fuero Común (368),
-
Violencia familiar (354),
-
Amenazas (348),
-
Robo de vehículo automotor (323),
-
Fraude (289),
-
Robo a negocio (182),
-
Robo a casa habitación (181),
-
Daño a la propiedad (130)
- Alerta en agosto: El Robo en transporte individual aumentó en septiembre en 5 de los últimos seis años. El 17% de estos robos se comete con violencia.
- En el mes y en el año, ocupamos el tercer lugar nacional en robo de ganado. Van 111 carpetas por este delito. Sólo en Julio se cometieron 22, la cantidad más alta desde enero de 2020.
- En Julio, el municipio de Querétaro alcanzó máximos historicos en varios delitos, tres de ellos cometidos típicamente contra mujeres:
-
Violencia familiar 190)
-
Abuso sexual (55)
-
Acoso sexual (45)
-
Otros delitos contra el patrimonio (5)
-
Otros delitos que atentan contra la libertad personal (14)
La capital también ocupa el lugar 49 a nivel nacional en robo a negocio, el 39 en fraude
- En el acumulado anual, el municipio de QUerétaro se mantiene en la posición 15 a nivel nacional en incidencia delictiva por cada 100 mil habiantes. San Juan del Río está en la posición 114, y El Marqués en la 140. Considerando sólo al mes de julio, estos municipios ocupan las posiciones 21,140 y 251.
- Cadereyta de Montes y Tolimán alcanzaron en julio su incidencia máxima en lo que va del año, con 91 y 48.
#plotly nos ayudará con los gráficos
library(plotly)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.4
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
#Cargo kintr para ver las tablas
library(knitr)
#instalo una reshape para transformar la estructura de las bases de datos
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.0.5
#indico el directorio de trabajo; si quieres trabajar en C:/, descargas o alguna otra carpeta, deberás modificar esta línea.
setwd("D:/")
#la base de datos de población de CONAPO viene en dos partes, las descomprimimos
elzip<-unzip("Municipal-Delitos-2015-2021_ene2021.zip", list = TRUE)
elzip<-unzip("Municipal-Delitos-2015-2021_ene2021.zip", elzip$Name[9])
#las leemos
pop1<-read.table("base_municipios_final_datos_01.csv",TRUE,",")
pop2<-read.table(file = "base_municipios_final_datos_02.csv",header = TRUE,sep = ",")
#Las fusionamos
pop<-rbind(pop1,pop2)
#cambiamos los nombres para evitar problemas de codificacipon
names(pop)<-names(pop)<-c(names(pop[1:6]),"ANO",names(pop[8:9]))
#Creo una tabla con la población por cada entidad federativa
names(pop)[7]<-"ANO"
years=unique(pop$ANO)
ent=unique(pop$CLAVE_ENT)
ent<-as.data.frame(ent)
for(i in 1:length(years)){
a<-subset(pop,pop$ANO==years[i])
tpob<-aggregate(a$POB~a$CLAVE_ENT,a,sum)
tpobDF<-as.data.frame(tpob)
tpobDF<-tpobDF[,2]
ent<-cbind(ent,tpobDF)
}
names(ent)<- c("Entidad", paste0("year",years))
### AHORA LOS DATOS DE SESNSP
#DELITOS
esteMes<-"Julio"
anterior<- "Junio"
proximo<-"Septiembre" ## Aqui va el mes siguiente al de la publicacion de los datos de SESNSP, no el mes actual
ruta<-"D:/Municipal-Delitos-2015-2021_jul2021/Municipal-Delitos-2015-2021_jul2021.csv"
#+Municipal-Delitos-2015-2020_mar2020/
#+Municipal-Delitos-2015-2020_mar2020.csv"
delitos<-read.csv(file = ruta,header = TRUE,sep = ",")
names(delitos)<-c("Ano",names(delitos[2:21]))
delitos2<-melt(
data = delitos,
id.vars = names(delitos[1:9]),
measure.vars = names(delitos[10:21]),
variable.name = "meses")
delitos2$value[is.na(delitos2$value)]<-0
queMes<-levels(delitos2$meses)
for (i in 1:length(queMes)) {
if(queMes[i]==esteMes){elActual<-i+1}
}
Delitos por estado (Serie Anual)
losAnos<-unique(delitos2$Ano)
porEstadoAnual<-as.data.frame(order(unique(delitos2$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos2,delitos2$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
porEstadoAnual<-cbind(porEstadoAnual,mitab)
}
names(porEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
tasaPorEstadoAnual<-porEstadoAnual
micol=ncol(porEstadoAnual)
tasaPorEstadoAnual[,2:micol]<-round(porEstadoAnual[,2:micol]/ent[,2:micol]*100000,2)
nomEnt<-c()
for (i in 1:32) {
nomEnt<-c(nomEnt,delitos2$Entidad[delitos2$Clave_Ent==i][1])
}
for (i in 1:length(nomEnt)) {
porEstadoAnual[i,1]<-nomEnt[i]
tasaPorEstadoAnual[i,1]<-nomEnt[i]
}
Serie Anual (Absolutos)
kable(porEstadoAnual)
Aguascalientes |
23212 |
23729 |
33548 |
38834 |
38429 |
33626 |
20882 |
Baja California |
119944 |
109109 |
111722 |
103028 |
104013 |
92168 |
56264 |
Baja California Sur |
21415 |
24606 |
24174 |
23438 |
22644 |
18254 |
10740 |
Campeche |
1886 |
2237 |
2056 |
2157 |
2312 |
2003 |
1288 |
Coahuila de Zaragoza |
46569 |
51242 |
56311 |
56307 |
52937 |
48461 |
33123 |
Colima |
6562 |
10877 |
24425 |
24494 |
26554 |
25370 |
15911 |
Chiapas |
21618 |
22189 |
25364 |
28892 |
23294 |
17269 |
9925 |
Chihuahua |
61280 |
57904 |
68819 |
68898 |
71837 |
66832 |
42528 |
Ciudad de México |
169701 |
179720 |
204078 |
241030 |
242839 |
198159 |
128754 |
Durango |
29088 |
32183 |
34851 |
31903 |
30338 |
26024 |
18151 |
Guanajuato |
95782 |
106265 |
117857 |
133749 |
137658 |
122870 |
76628 |
Guerrero |
36783 |
36561 |
32799 |
27695 |
27344 |
23874 |
14461 |
Hidalgo |
27504 |
33754 |
43963 |
51222 |
49750 |
41260 |
24794 |
Jalisco |
95331 |
136820 |
166599 |
162756 |
156653 |
126599 |
74355 |
México |
323525 |
325038 |
345693 |
341028 |
354602 |
341277 |
223309 |
Michoacán de Ocampo |
30899 |
32558 |
41836 |
45190 |
46753 |
45888 |
27373 |
Morelos |
49245 |
45448 |
44329 |
44936 |
43191 |
40491 |
24641 |
Nayarit |
6651 |
3668 |
3220 |
4545 |
4642 |
4165 |
2869 |
Nuevo León |
72350 |
84746 |
83974 |
81125 |
75871 |
78949 |
52411 |
Oaxaca |
6127 |
31607 |
31938 |
41989 |
43788 |
39061 |
24404 |
Puebla |
64399 |
51061 |
53800 |
61172 |
76557 |
63587 |
43580 |
Querétaro |
32817 |
42900 |
53379 |
57809 |
60515 |
52026 |
31669 |
Quintana Roo |
32496 |
18958 |
26518 |
34043 |
45896 |
40751 |
27507 |
San Luis Potosí |
21419 |
28613 |
35179 |
38362 |
52288 |
45808 |
29300 |
Sinaloa |
25812 |
22141 |
22931 |
23486 |
23443 |
23910 |
16138 |
Sonora |
28659 |
39423 |
25969 |
18197 |
23438 |
31090 |
22431 |
Tabasco |
57452 |
59434 |
60395 |
58271 |
56561 |
45014 |
29245 |
Tamaulipas |
44527 |
48528 |
47163 |
44048 |
42413 |
31844 |
20942 |
Tlaxcala |
8317 |
6775 |
6964 |
6369 |
4411 |
4141 |
2606 |
Veracruz de Ignacio de la Llave |
45539 |
42312 |
66379 |
60758 |
89822 |
79259 |
52809 |
Yucatán |
34716 |
34288 |
24390 |
13129 |
16419 |
8417 |
6626 |
Zacatecas |
16179 |
17136 |
18874 |
21070 |
23952 |
22742 |
14664 |
Serie Anual (Tasa por 100 mil habitantes)
kable(tasaPorEstadoAnual)
Aguascalientes |
1742.87 |
1750.80 |
2438.47 |
2782.22 |
2715.02 |
2343.87 |
1436.72 |
Baja California |
3572.11 |
3205.94 |
3226.28 |
2925.90 |
2906.56 |
2535.66 |
1524.70 |
Baja California Sur |
2974.94 |
3338.69 |
3204.95 |
3038.79 |
2873.17 |
2268.40 |
1308.07 |
Campeche |
205.71 |
239.65 |
216.32 |
222.99 |
234.95 |
200.18 |
126.65 |
Coahuila de Zaragoza |
1552.01 |
1683.90 |
1823.63 |
1797.79 |
1666.97 |
1505.60 |
1015.65 |
Colima |
909.25 |
1480.54 |
3267.11 |
3221.48 |
3435.89 |
3231.22 |
1995.75 |
Chiapas |
407.29 |
411.37 |
462.90 |
519.28 |
412.46 |
301.36 |
170.76 |
Chihuahua |
1694.46 |
1586.66 |
1865.32 |
1848.13 |
1907.86 |
1758.05 |
1108.51 |
Ciudad de México |
1873.34 |
1984.98 |
2255.23 |
2665.85 |
2688.89 |
2197.21 |
1429.99 |
Durango |
1632.71 |
1786.00 |
1915.42 |
1737.20 |
1637.28 |
1392.41 |
963.11 |
Guanajuato |
1615.04 |
1771.83 |
1945.29 |
2186.44 |
2229.74 |
1972.81 |
1220.07 |
Guerrero |
1028.44 |
1016.34 |
907.49 |
763.00 |
750.39 |
652.82 |
394.14 |
Hidalgo |
948.58 |
1148.58 |
1476.77 |
1699.32 |
1630.76 |
1336.83 |
794.33 |
Jalisco |
1197.13 |
1698.37 |
2044.37 |
1975.44 |
1881.54 |
1505.39 |
875.71 |
México |
1966.28 |
1951.18 |
2050.24 |
1999.38 |
2056.19 |
1958.23 |
1268.55 |
Michoacán de Ocampo |
665.25 |
694.97 |
886.01 |
949.87 |
975.65 |
950.97 |
563.49 |
Morelos |
2550.89 |
2325.04 |
2241.16 |
2246.21 |
2135.45 |
1980.91 |
1193.26 |
Nayarit |
556.34 |
301.99 |
261.00 |
362.91 |
365.33 |
323.23 |
219.65 |
Nuevo León |
1389.90 |
1600.73 |
1562.24 |
1487.21 |
1371.21 |
1407.25 |
921.77 |
Oaxaca |
152.44 |
781.10 |
784.27 |
1024.87 |
1062.62 |
942.68 |
585.84 |
Puebla |
1026.36 |
804.62 |
838.87 |
944.18 |
1170.15 |
962.79 |
653.89 |
Querétaro |
1585.70 |
2029.59 |
2475.64 |
2630.15 |
2702.63 |
2282.21 |
1365.32 |
Quintana Roo |
2131.06 |
1211.44 |
1651.84 |
2069.19 |
2724.54 |
2364.76 |
1561.67 |
San Luis Potosí |
776.55 |
1028.71 |
1254.74 |
1357.87 |
1837.27 |
1598.25 |
1015.35 |
Sinaloa |
855.90 |
726.08 |
745.13 |
756.49 |
748.74 |
757.44 |
507.23 |
Sonora |
993.46 |
1348.87 |
876.79 |
606.54 |
771.56 |
1011.14 |
720.99 |
Tabasco |
2367.92 |
2418.60 |
2428.49 |
2316.09 |
2222.98 |
1749.96 |
1124.96 |
Tamaulipas |
1274.12 |
1375.86 |
1325.08 |
1226.80 |
1171.34 |
872.29 |
569.13 |
Tlaxcala |
642.14 |
515.44 |
523.07 |
472.50 |
323.35 |
300.07 |
186.74 |
Veracruz de Ignacio de la Llave |
552.57 |
508.77 |
792.40 |
720.38 |
1058.17 |
928.11 |
614.88 |
Yucatán |
1630.78 |
1590.44 |
1117.65 |
594.55 |
735.00 |
372.58 |
290.11 |
Zacatecas |
1010.11 |
1059.95 |
1158.06 |
1282.89 |
1447.61 |
1364.72 |
873.94 |
Posición de Querétaro por año (según tasa por cada 100k habitantes)
posicionAnual<-c()
for (i in 1:length(losAnos)) {
a<-tasaPorEstadoAnual[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaPorEstadoAnual[tasaPorEstadoAnual[i+1]>a,i+1])}
posicionAnual<-c(posicionAnual,b)
}
posicionesAnual<-data.frame(losAnos, posicionAnual)
names(posicionesAnual)<-c("Año","Posición del estado de Querétaro a nivel nacional")
kable(posicionesAnual, caption="Posición de Querétaro en la incidencia delictiva anual")
Posición de Querétaro en la incidencia delictiva anual
2015 |
13 |
2016 |
5 |
2017 |
4 |
2018 |
6 |
2019 |
6 |
2020 |
5 |
2021 |
6 |
Delitos por estado (Serie Mensual)
delitoMensual<-subset(delitos2, delitos2$Ano==losAnos[length(losAnos)])
losmeses<-unique(delitoMensual$meses)
delitoPorEstado2020=as.data.frame(order(unique(delitoMensual$Clave_Ent)))
for (i in 1:length(losmeses)) {
datos<-delitoMensual[delitoMensual$meses==losmeses[i],]
delitoAnual<-as.data.frame(aggregate(datos$value~datos$Clave_Ent,datos,sum))[2]
delitoPorEstado2020<-cbind(delitoPorEstado2020,delitoAnual)
}
names(delitoPorEstado2020)<-c("clave de la entidad",levels(losmeses))
tasaAnualDedelitoPorEstado2020<-delitoPorEstado2020
tasaAnualDedelitoPorEstado2020[,2:elActual]<-round(delitoPorEstado2020[,2:elActual]/ent$year2020*100000,2)
if(esteMes!="Enero"){tasaDeCambio<-delitoPorEstado2020[,c(anterior,esteMes)]}else{
dic=as.data.frame(aggregate(formula =delitos2$value~delitos2$Clave_Ent,data = delitos2,FUN = sum,subset = delitos2$meses=="Diciembre" & delitos2$Ano==losAnos[length(losAnos)-1]))
tasaDeCambio=cbind(dic[2],delitoPorEstado2020[,esteMes])
names(tasaDeCambio)=c("Diciembre","Enero")
}
tasaDeCambio$tasa<-NA
tasaDeCambio$tasa<-round((tasaDeCambio[2]-tasaDeCambio[1])/tasaDeCambio[1]*100,2)
#la tasa de cambio de QUerétaro
tq<-tasaDeCambio[22,3]
tq<-tq[1,1]
#Querétaro fue el iesimo estado que mas crecio
iesimo<-length(tasaDeCambio$tasa[tasaDeCambio$tasa>tq])+1
totN<-colSums(tasaDeCambio[,c(1,2)])
#El pais creció a una tasa de tmex en el periodo
tmex<-round((totN[2]-totN[1])/totN[1]*100,2)
tmex<-as.vector(tmex)[1]
# Pone nombre al estado
nomEnt<-c()
for (i in 1:32) {
nomEnt<-c(nomEnt,delitoMensual$Entidad[delitoMensual$Clave_Ent==i][1])
}
delitoPorEstado2020$`clave de la entidad`<-nomEnt
ent$Entidad<-nomEnt
tasaAnualDedelitoPorEstado2020[1]<-nomEnt
En esta sección mostramos cómo se ha comportado la incidencia delictiva mes a mes, estado por estado.
General
Entre Junio y Julio, el delito en Querétaro creció en 1.43%, en tanto que a nivel nacional lo hizo en -3.46%. Querétaro es en este periodo el 5 estado con la tasa de crecimiento más alta.
Tasa de cambio
kable(tasaDeCambio)
3041 |
2931 |
-3.62 |
8357 |
8857 |
5.98 |
1616 |
1429 |
-11.57 |
182 |
180 |
-1.10 |
4809 |
5556 |
15.53 |
2276 |
2353 |
3.38 |
1480 |
1442 |
-2.57 |
6342 |
6131 |
-3.33 |
19532 |
19178 |
-1.81 |
2775 |
2489 |
-10.31 |
11281 |
10695 |
-5.19 |
2090 |
2081 |
-0.43 |
4478 |
3062 |
-31.62 |
10961 |
11013 |
0.47 |
32687 |
32554 |
-0.41 |
4003 |
3786 |
-5.42 |
3625 |
3472 |
-4.22 |
462 |
448 |
-3.03 |
8379 |
7616 |
-9.11 |
3479 |
3482 |
0.09 |
6683 |
6695 |
0.18 |
4612 |
4678 |
1.43 |
4051 |
3951 |
-2.47 |
4643 |
4232 |
-8.85 |
2446 |
2023 |
-17.29 |
3118 |
2644 |
-15.20 |
4333 |
4183 |
-3.46 |
3194 |
3074 |
-3.76 |
383 |
417 |
8.88 |
8060 |
6945 |
-13.83 |
567 |
537 |
-5.29 |
2226 |
1933 |
-13.16 |
Serie Mensual 2020 (Absolutos)
kable(delitoPorEstado2020)
Aguascalientes |
2789 |
2730 |
3263 |
2979 |
3149 |
3041 |
2931 |
0 |
0 |
0 |
0 |
0 |
Baja California |
7558 |
7362 |
8048 |
8101 |
7981 |
8357 |
8857 |
0 |
0 |
0 |
0 |
0 |
Baja California Sur |
1281 |
1486 |
1632 |
1599 |
1697 |
1616 |
1429 |
0 |
0 |
0 |
0 |
0 |
Campeche |
178 |
178 |
180 |
201 |
189 |
182 |
180 |
0 |
0 |
0 |
0 |
0 |
Coahuila de Zaragoza |
3857 |
4085 |
4520 |
5442 |
4854 |
4809 |
5556 |
0 |
0 |
0 |
0 |
0 |
Colima |
2155 |
1965 |
2432 |
2257 |
2473 |
2276 |
2353 |
0 |
0 |
0 |
0 |
0 |
Chiapas |
1304 |
1379 |
1477 |
1404 |
1439 |
1480 |
1442 |
0 |
0 |
0 |
0 |
0 |
Chihuahua |
5517 |
5476 |
6652 |
5995 |
6415 |
6342 |
6131 |
0 |
0 |
0 |
0 |
0 |
Ciudad de México |
15392 |
15913 |
19946 |
18973 |
19820 |
19532 |
19178 |
0 |
0 |
0 |
0 |
0 |
Durango |
2237 |
2469 |
2812 |
2697 |
2672 |
2775 |
2489 |
0 |
0 |
0 |
0 |
0 |
Guanajuato |
9900 |
9622 |
12162 |
11594 |
11374 |
11281 |
10695 |
0 |
0 |
0 |
0 |
0 |
Guerrero |
1870 |
1848 |
2266 |
2084 |
2222 |
2090 |
2081 |
0 |
0 |
0 |
0 |
0 |
Hidalgo |
2431 |
2639 |
3960 |
3578 |
4646 |
4478 |
3062 |
0 |
0 |
0 |
0 |
0 |
Jalisco |
9671 |
9486 |
11642 |
11021 |
10561 |
10961 |
11013 |
0 |
0 |
0 |
0 |
0 |
México |
27382 |
29086 |
34834 |
32850 |
33916 |
32687 |
32554 |
0 |
0 |
0 |
0 |
0 |
Michoacán de Ocampo |
3701 |
3450 |
4249 |
3977 |
4207 |
4003 |
3786 |
0 |
0 |
0 |
0 |
0 |
Morelos |
2970 |
3196 |
3886 |
3758 |
3734 |
3625 |
3472 |
0 |
0 |
0 |
0 |
0 |
Nayarit |
374 |
400 |
413 |
381 |
391 |
462 |
448 |
0 |
0 |
0 |
0 |
0 |
Nuevo León |
6375 |
6762 |
7801 |
7700 |
7778 |
8379 |
7616 |
0 |
0 |
0 |
0 |
0 |
Oaxaca |
3287 |
3214 |
3854 |
3470 |
3618 |
3479 |
3482 |
0 |
0 |
0 |
0 |
0 |
Puebla |
5272 |
5465 |
6643 |
6383 |
6439 |
6683 |
6695 |
0 |
0 |
0 |
0 |
0 |
Querétaro |
4048 |
4041 |
4871 |
4677 |
4742 |
4612 |
4678 |
0 |
0 |
0 |
0 |
0 |
Quintana Roo |
3520 |
3447 |
4311 |
4024 |
4203 |
4051 |
3951 |
0 |
0 |
0 |
0 |
0 |
San Luis Potosí |
3630 |
3325 |
4574 |
4349 |
4547 |
4643 |
4232 |
0 |
0 |
0 |
0 |
0 |
Sinaloa |
2113 |
2241 |
2502 |
2347 |
2466 |
2446 |
2023 |
0 |
0 |
0 |
0 |
0 |
Sonora |
2800 |
3152 |
4089 |
3399 |
3229 |
3118 |
2644 |
0 |
0 |
0 |
0 |
0 |
Tabasco |
3652 |
3811 |
4848 |
4138 |
4280 |
4333 |
4183 |
0 |
0 |
0 |
0 |
0 |
Tamaulipas |
2506 |
2375 |
3269 |
3282 |
3242 |
3194 |
3074 |
0 |
0 |
0 |
0 |
0 |
Tlaxcala |
318 |
338 |
400 |
358 |
392 |
383 |
417 |
0 |
0 |
0 |
0 |
0 |
Veracruz de Ignacio de la Llave |
6650 |
6841 |
8240 |
8128 |
7945 |
8060 |
6945 |
0 |
0 |
0 |
0 |
0 |
Yucatán |
1046 |
981 |
1109 |
1141 |
1245 |
567 |
537 |
0 |
0 |
0 |
0 |
0 |
Zacatecas |
1840 |
1990 |
2243 |
2186 |
2246 |
2226 |
1933 |
0 |
0 |
0 |
0 |
0 |
Serie Mensual 2020 (Tasa por 100 mil habitantes)
kable(tasaAnualDedelitoPorEstado2020)
Aguascalientes |
194.40 |
190.29 |
227.44 |
207.65 |
219.50 |
211.97 |
204.30 |
0 |
0 |
0 |
0 |
0 |
Baja California |
207.93 |
202.54 |
221.41 |
222.87 |
219.57 |
229.91 |
243.67 |
0 |
0 |
0 |
0 |
0 |
Baja California Sur |
159.19 |
184.66 |
202.81 |
198.71 |
210.88 |
200.82 |
177.58 |
0 |
0 |
0 |
0 |
0 |
Campeche |
17.79 |
17.79 |
17.99 |
20.09 |
18.89 |
18.19 |
17.99 |
0 |
0 |
0 |
0 |
0 |
Coahuila de Zaragoza |
119.83 |
126.91 |
140.43 |
169.07 |
150.81 |
149.41 |
172.62 |
0 |
0 |
0 |
0 |
0 |
Colima |
274.47 |
250.27 |
309.75 |
287.46 |
314.97 |
289.88 |
299.69 |
0 |
0 |
0 |
0 |
0 |
Chiapas |
22.76 |
24.06 |
25.77 |
24.50 |
25.11 |
25.83 |
25.16 |
0 |
0 |
0 |
0 |
0 |
Chihuahua |
145.13 |
144.05 |
174.98 |
157.70 |
168.75 |
166.83 |
161.28 |
0 |
0 |
0 |
0 |
0 |
Ciudad de México |
170.67 |
176.45 |
221.16 |
210.38 |
219.77 |
216.57 |
212.65 |
0 |
0 |
0 |
0 |
0 |
Durango |
119.69 |
132.10 |
150.46 |
144.30 |
142.96 |
148.48 |
133.17 |
0 |
0 |
0 |
0 |
0 |
Guanajuato |
158.96 |
154.49 |
195.27 |
186.15 |
182.62 |
181.13 |
171.72 |
0 |
0 |
0 |
0 |
0 |
Guerrero |
51.13 |
50.53 |
61.96 |
56.99 |
60.76 |
57.15 |
56.90 |
0 |
0 |
0 |
0 |
0 |
Hidalgo |
78.76 |
85.50 |
128.30 |
115.93 |
150.53 |
145.09 |
99.21 |
0 |
0 |
0 |
0 |
0 |
Jalisco |
115.00 |
112.80 |
138.44 |
131.05 |
125.58 |
130.34 |
130.96 |
0 |
0 |
0 |
0 |
0 |
México |
157.12 |
166.89 |
199.88 |
188.49 |
194.61 |
187.56 |
186.79 |
0 |
0 |
0 |
0 |
0 |
Michoacán de Ocampo |
76.70 |
71.50 |
88.05 |
82.42 |
87.18 |
82.96 |
78.46 |
0 |
0 |
0 |
0 |
0 |
Morelos |
145.30 |
156.36 |
190.11 |
183.85 |
182.68 |
177.34 |
169.86 |
0 |
0 |
0 |
0 |
0 |
Nayarit |
29.02 |
31.04 |
32.05 |
29.57 |
30.34 |
35.85 |
34.77 |
0 |
0 |
0 |
0 |
0 |
Nuevo León |
113.63 |
120.53 |
139.05 |
137.25 |
138.64 |
149.35 |
135.75 |
0 |
0 |
0 |
0 |
0 |
Oaxaca |
79.33 |
77.57 |
93.01 |
83.74 |
87.32 |
83.96 |
84.03 |
0 |
0 |
0 |
0 |
0 |
Puebla |
79.82 |
82.75 |
100.58 |
96.65 |
97.49 |
101.19 |
101.37 |
0 |
0 |
0 |
0 |
0 |
Querétaro |
177.57 |
177.27 |
213.67 |
205.16 |
208.02 |
202.31 |
205.21 |
0 |
0 |
0 |
0 |
0 |
Quintana Roo |
204.26 |
200.03 |
250.17 |
233.51 |
243.90 |
235.08 |
229.27 |
0 |
0 |
0 |
0 |
0 |
San Luis Potosí |
126.65 |
116.01 |
159.59 |
151.74 |
158.65 |
161.99 |
147.65 |
0 |
0 |
0 |
0 |
0 |
Sinaloa |
66.94 |
70.99 |
79.26 |
74.35 |
78.12 |
77.49 |
64.09 |
0 |
0 |
0 |
0 |
0 |
Sonora |
91.06 |
102.51 |
132.99 |
110.55 |
105.02 |
101.41 |
85.99 |
0 |
0 |
0 |
0 |
0 |
Tabasco |
141.97 |
148.16 |
188.47 |
160.87 |
166.39 |
168.45 |
162.62 |
0 |
0 |
0 |
0 |
0 |
Tamaulipas |
68.65 |
65.06 |
89.55 |
89.90 |
88.81 |
87.49 |
84.21 |
0 |
0 |
0 |
0 |
0 |
Tlaxcala |
23.04 |
24.49 |
28.99 |
25.94 |
28.41 |
27.75 |
30.22 |
0 |
0 |
0 |
0 |
0 |
Veracruz de Ignacio de la Llave |
77.87 |
80.11 |
96.49 |
95.18 |
93.03 |
94.38 |
81.32 |
0 |
0 |
0 |
0 |
0 |
Yucatán |
46.30 |
43.42 |
49.09 |
50.51 |
55.11 |
25.10 |
23.77 |
0 |
0 |
0 |
0 |
0 |
Zacatecas |
110.42 |
119.42 |
134.60 |
131.18 |
134.78 |
133.58 |
116.00 |
0 |
0 |
0 |
0 |
0 |
posición de queretaro por mes en el país
posicionMensual<-c()
for (i in 1:length(losmeses)) {
a<-tasaAnualDedelitoPorEstado2020[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaAnualDedelitoPorEstado2020[tasaAnualDedelitoPorEstado2020[i+1]>a,i+1])}
posicionMensual<-c(posicionMensual,b)
}
posiciones<-data.frame(losmeses, posicionMensual)
names(posiciones)<-c("Mes","Posición de Querétaro a nivel nacional en el periodo")
kable(posiciones)
Enero |
5 |
Febrero |
6 |
Marzo |
6 |
Abril |
6 |
Mayo |
7 |
Junio |
6 |
Julio |
5 |
Agosto |
0 |
Septiembre |
0 |
Octubre |
0 |
Noviembre |
0 |
Diciembre |
0 |
Lugar de Querétaro en el año por delito
losDelitos<-unique(delitos2$Subtipo.de.delito)
losDelitos2020<-subset(delitos2,delitos2$Ano==losAnos[length(losAnos)])
delitoEstado2020=as.data.frame(order(unique(losDelitos2020$Clave_Ent)))
for (i in 1:length(losDelitos)) {
a<-subset(losDelitos2020,losDelitos2020$Subtipo.de.delito==losDelitos[i])
b<-as.data.frame(aggregate(a$value~a$Clave_Ent,a,sum))[2]
delitoEstado2020<-cbind(delitoEstado2020,b)
}
names(delitoEstado2020)<-c("claveEntidad",losDelitos)
tasaDelitoEstado2020<-delitoEstado2020
tasaDelitoEstado2020[,2:56]<-round(delitoEstado2020[,2:56]/ent[,micol]*100000,2)
for (i in 1:length(nomEnt)) {
delitoEstado2020[i,1]<-nomEnt[i]
tasaDelitoEstado2020[i,1]<-nomEnt[i]
}
Incidencia en subtipos de Delito por estado en 2020
kable(delitoEstado2020)
Aguascalientes |
39 |
80 |
2066 |
574 |
6 |
10 |
32 |
1 |
0 |
0 |
253 |
0 |
0 |
64 |
148 |
70 |
0 |
295 |
1358 |
780 |
478 |
0 |
804 |
0 |
69 |
4 |
13 |
0 |
1072 |
134 |
2 |
1101 |
1253 |
403 |
49 |
2411 |
239 |
124 |
1400 |
2 |
139 |
21 |
32 |
2 |
2 |
942 |
1988 |
312 |
0 |
40 |
522 |
25 |
335 |
64 |
1124 |
Baja California |
1658 |
297 |
3099 |
922 |
10 |
18 |
1448 |
11 |
3 |
0 |
377 |
786 |
0 |
117 |
342 |
192 |
0 |
161 |
1789 |
6493 |
36 |
22 |
2436 |
4 |
7 |
3 |
11 |
1 |
2929 |
22 |
0 |
3705 |
1309 |
292 |
97 |
4490 |
850 |
527 |
7154 |
0 |
482 |
288 |
445 |
32 |
27 |
4948 |
2596 |
1170 |
1 |
69 |
247 |
5 |
527 |
52 |
3757 |
Baja California Sur |
31 |
35 |
852 |
237 |
4 |
7 |
82 |
4 |
1 |
0 |
146 |
161 |
76 |
14 |
116 |
33 |
0 |
48 |
580 |
301 |
11 |
1 |
70 |
25 |
2 |
2 |
2 |
1 |
333 |
29 |
2 |
1420 |
655 |
179 |
48 |
808 |
217 |
48 |
1467 |
6 |
429 |
167 |
32 |
2 |
1 |
276 |
913 |
105 |
0 |
73 |
69 |
3 |
148 |
10 |
458 |
Campeche |
49 |
45 |
63 |
44 |
5 |
0 |
19 |
1 |
0 |
0 |
6 |
29 |
0 |
0 |
37 |
108 |
0 |
7 |
93 |
246 |
8 |
4 |
27 |
0 |
0 |
0 |
0 |
0 |
112 |
13 |
2 |
73 |
4 |
1 |
8 |
88 |
2 |
16 |
16 |
0 |
1 |
0 |
0 |
2 |
1 |
86 |
27 |
13 |
0 |
0 |
1 |
0 |
0 |
2 |
29 |
Coahuila de Zaragoza |
86 |
124 |
2282 |
400 |
9 |
4 |
21 |
3 |
0 |
0 |
36 |
472 |
210 |
11 |
165 |
155 |
0 |
42 |
1173 |
273 |
82 |
7 |
149 |
27 |
10 |
7 |
13 |
2 |
568 |
48 |
52 |
1611 |
874 |
370 |
17 |
4014 |
266 |
841 |
7236 |
13 |
125 |
110 |
29 |
6 |
0 |
5874 |
3294 |
392 |
0 |
10 |
87 |
2 |
380 |
87 |
1054 |
Colima |
292 |
94 |
665 |
424 |
3 |
0 |
0 |
4 |
0 |
0 |
213 |
201 |
0 |
39 |
122 |
0 |
0 |
42 |
1012 |
556 |
0 |
1 |
63 |
11 |
0 |
0 |
0 |
0 |
408 |
26 |
0 |
1923 |
779 |
256 |
49 |
1788 |
286 |
146 |
2543 |
0 |
458 |
0 |
29 |
0 |
73 |
849 |
1606 |
137 |
0 |
40 |
120 |
9 |
161 |
25 |
458 |
Chiapas |
281 |
436 |
371 |
383 |
31 |
6 |
86 |
5 |
1 |
0 |
116 |
122 |
51 |
13 |
297 |
3 |
0 |
440 |
90 |
897 |
0 |
0 |
76 |
29 |
0 |
5 |
4 |
2 |
148 |
29 |
8 |
431 |
149 |
34 |
26 |
596 |
98 |
116 |
2484 |
0 |
165 |
2 |
29 |
3 |
64 |
682 |
240 |
51 |
3 |
8 |
50 |
29 |
82 |
22 |
631 |
Chihuahua |
1245 |
177 |
2751 |
873 |
24 |
3 |
258 |
18 |
2 |
0 |
363 |
979 |
0 |
117 |
614 |
180 |
0 |
214 |
1445 |
2223 |
338 |
9 |
200 |
64 |
4 |
3 |
11 |
1 |
999 |
91 |
105 |
2505 |
2119 |
539 |
4 |
5094 |
560 |
381 |
7406 |
15 |
1045 |
18 |
41 |
14 |
1 |
3587 |
2166 |
600 |
0 |
129 |
837 |
81 |
867 |
63 |
1145 |
Ciudad de México |
565 |
371 |
2621 |
2431 |
35 |
52 |
154 |
20 |
1 |
8 |
1205 |
2257 |
815 |
0 |
816 |
477 |
0 |
916 |
2231 |
4474 |
4897 |
94 |
6468 |
1700 |
320 |
2133 |
1463 |
10 |
7592 |
0 |
15 |
14619 |
10616 |
2671 |
270 |
6114 |
2646 |
2577 |
20341 |
0 |
495 |
8 |
181 |
52 |
1357 |
3061 |
9901 |
551 |
9 |
234 |
1542 |
550 |
2871 |
512 |
3435 |
Durango |
80 |
140 |
1572 |
704 |
7 |
0 |
8 |
0 |
0 |
0 |
121 |
314 |
56 |
6 |
211 |
5 |
0 |
168 |
1562 |
547 |
81 |
3 |
252 |
7 |
16 |
6 |
3 |
1 |
590 |
57 |
6 |
2055 |
1113 |
374 |
52 |
1607 |
266 |
39 |
3469 |
0 |
48 |
305 |
1 |
0 |
8 |
573 |
787 |
108 |
0 |
17 |
72 |
0 |
71 |
7 |
656 |
Guanajuato |
1711 |
510 |
7152 |
16 |
20 |
18 |
374 |
7 |
0 |
0 |
0 |
763 |
143 |
29 |
461 |
49 |
2 |
14 |
2462 |
2113 |
0 |
4 |
114 |
0 |
0 |
0 |
0 |
1 |
2475 |
100 |
0 |
10433 |
2069 |
861 |
102 |
6030 |
856 |
93 |
6729 |
0 |
1126 |
28 |
177 |
0 |
0 |
13024 |
5715 |
240 |
4 |
118 |
264 |
2 |
91 |
38 |
10090 |
Guerrero |
685 |
236 |
1298 |
327 |
7 |
3 |
24 |
5 |
3 |
0 |
234 |
200 |
59 |
8 |
125 |
96 |
0 |
0 |
186 |
1082 |
13 |
0 |
129 |
15 |
0 |
5 |
0 |
0 |
540 |
16 |
4 |
1486 |
404 |
185 |
129 |
1115 |
313 |
0 |
2070 |
143 |
321 |
92 |
7 |
1 |
0 |
602 |
1275 |
117 |
0 |
47 |
124 |
7 |
103 |
12 |
608 |
Hidalgo |
127 |
177 |
2043 |
1001 |
11 |
15 |
90 |
16 |
2 |
1 |
882 |
415 |
0 |
48 |
236 |
201 |
0 |
52 |
813 |
1658 |
23 |
33 |
368 |
63 |
28 |
5 |
32 |
0 |
560 |
33 |
6 |
2419 |
771 |
222 |
51 |
1198 |
445 |
69 |
3228 |
0 |
354 |
3 |
18 |
1 |
4 |
609 |
1123 |
170 |
2 |
41 |
104 |
0 |
237 |
63 |
4723 |
Jalisco |
1130 |
529 |
4709 |
1506 |
45 |
6 |
0 |
13 |
1 |
0 |
457 |
1412 |
161 |
52 |
301 |
0 |
0 |
628 |
2286 |
7095 |
1043 |
197 |
4275 |
259 |
119 |
183 |
127 |
11 |
4651 |
77 |
265 |
9240 |
4277 |
835 |
349 |
4486 |
988 |
0 |
7599 |
0 |
0 |
561 |
81 |
7 |
3 |
623 |
6017 |
165 |
3 |
58 |
849 |
26 |
325 |
5 |
6320 |
México |
1321 |
786 |
28428 |
5620 |
77 |
93 |
611 |
74 |
0 |
0 |
1969 |
2457 |
808 |
67 |
859 |
667 |
0 |
58 |
5151 |
20637 |
2081 |
2652 |
13191 |
88 |
648 |
4093 |
6025 |
8 |
11833 |
118 |
7 |
12861 |
7960 |
2392 |
1864 |
8366 |
2967 |
62 |
13234 |
1258 |
1465 |
5 |
52 |
92 |
2549 |
2151 |
0 |
1045 |
13 |
71 |
891 |
211 |
2293 |
288 |
50792 |
Michoacán de Ocampo |
1253 |
583 |
3789 |
693 |
12 |
13 |
142 |
19 |
0 |
0 |
206 |
339 |
97 |
21 |
251 |
77 |
0 |
154 |
737 |
3094 |
16 |
604 |
274 |
35 |
22 |
35 |
12 |
8 |
411 |
45 |
48 |
1936 |
1435 |
331 |
41 |
2122 |
580 |
191 |
702 |
0 |
87 |
0 |
14 |
3 |
3 |
1458 |
2674 |
171 |
0 |
23 |
473 |
75 |
185 |
96 |
1783 |
Morelos |
588 |
181 |
498 |
1579 |
21 |
7 |
328 |
10 |
0 |
2 |
140 |
328 |
19 |
50 |
276 |
0 |
0 |
36 |
917 |
2245 |
830 |
137 |
466 |
47 |
15 |
37 |
36 |
13 |
1428 |
35 |
2 |
2384 |
1018 |
408 |
86 |
1443 |
782 |
299 |
2975 |
0 |
143 |
218 |
17 |
2 |
12 |
481 |
2718 |
229 |
3 |
64 |
95 |
5 |
24 |
8 |
956 |
Nayarit |
122 |
102 |
114 |
28 |
2 |
3 |
7 |
6 |
0 |
0 |
41 |
0 |
10 |
0 |
102 |
15 |
0 |
69 |
74 |
240 |
13 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
58 |
1 |
0 |
98 |
75 |
14 |
9 |
80 |
24 |
3 |
604 |
0 |
282 |
7 |
10 |
1 |
4 |
52 |
61 |
29 |
0 |
3 |
2 |
1 |
5 |
2 |
494 |
Nuevo León |
603 |
351 |
2467 |
883 |
25 |
67 |
211 |
12 |
0 |
69 |
1435 |
991 |
341 |
34 |
514 |
274 |
1 |
497 |
1367 |
1834 |
47 |
108 |
448 |
322 |
39 |
15 |
16 |
2 |
739 |
68 |
22 |
2719 |
3282 |
595 |
306 |
3467 |
834 |
65 |
12130 |
0 |
294 |
3654 |
87 |
78 |
0 |
2594 |
3043 |
237 |
6 |
103 |
991 |
1 |
1160 |
504 |
2459 |
Oaxaca |
418 |
586 |
2313 |
580 |
27 |
6 |
118 |
13 |
1 |
0 |
111 |
340 |
152 |
42 |
233 |
207 |
0 |
18 |
547 |
1306 |
60 |
35 |
1003 |
123 |
116 |
88 |
9 |
12 |
647 |
46 |
17 |
1633 |
1098 |
299 |
73 |
1568 |
661 |
334 |
4103 |
4 |
77 |
145 |
12 |
9 |
332 |
153 |
2714 |
171 |
1 |
206 |
221 |
0 |
225 |
261 |
930 |
Puebla |
452 |
213 |
3301 |
575 |
27 |
4 |
162 |
9 |
0 |
0 |
152 |
473 |
165 |
29 |
312 |
249 |
0 |
699 |
1458 |
4542 |
651 |
559 |
2069 |
0 |
63 |
222 |
784 |
5 |
2219 |
69 |
282 |
3337 |
2638 |
890 |
76 |
2426 |
1092 |
165 |
5229 |
0 |
174 |
345 |
13 |
29 |
404 |
1157 |
3404 |
222 |
2 |
72 |
207 |
18 |
724 |
135 |
1076 |
Querétaro |
111 |
181 |
2863 |
585 |
7 |
22 |
740 |
6 |
0 |
0 |
80 |
403 |
411 |
0 |
250 |
144 |
0 |
29 |
1399 |
2065 |
344 |
0 |
799 |
52 |
96 |
200 |
173 |
0 |
1235 |
111 |
7 |
6120 |
2015 |
463 |
153 |
922 |
571 |
34 |
2246 |
50 |
310 |
142 |
0 |
2 |
299 |
649 |
2521 |
156 |
2 |
77 |
103 |
2 |
0 |
57 |
2462 |
Quintana Roo |
328 |
522 |
1530 |
705 |
15 |
4 |
216 |
9 |
1 |
0 |
532 |
528 |
165 |
28 |
463 |
0 |
0 |
243 |
849 |
1504 |
50 |
15 |
1013 |
291 |
35 |
58 |
17 |
0 |
1210 |
13 |
523 |
3377 |
244 |
1615 |
75 |
2442 |
518 |
169 |
3562 |
0 |
372 |
373 |
65 |
13 |
1 |
657 |
1512 |
153 |
0 |
194 |
158 |
45 |
352 |
64 |
679 |
San Luis Potosí |
401 |
156 |
2361 |
340 |
16 |
6 |
160 |
10 |
4 |
0 |
411 |
374 |
173 |
24 |
397 |
0 |
0 |
192 |
698 |
1936 |
433 |
205 |
410 |
24 |
20 |
15 |
4 |
1 |
955 |
128 |
95 |
2410 |
1305 |
511 |
72 |
3220 |
382 |
1110 |
5510 |
0 |
282 |
3 |
10 |
6 |
0 |
574 |
1690 |
340 |
0 |
0 |
77 |
50 |
359 |
30 |
1410 |
Sinaloa |
336 |
392 |
1615 |
431 |
24 |
4 |
337 |
5 |
2 |
0 |
728 |
233 |
46 |
6 |
127 |
52 |
0 |
27 |
193 |
2033 |
5 |
1 |
23 |
1 |
7 |
2 |
11 |
11 |
713 |
10 |
0 |
1348 |
397 |
194 |
38 |
1311 |
341 |
19 |
3450 |
0 |
89 |
96 |
38 |
3 |
53 |
89 |
793 |
35 |
2 |
32 |
93 |
0 |
106 |
42 |
194 |
Sonora |
947 |
214 |
1304 |
589 |
27 |
10 |
232 |
4 |
0 |
4 |
390 |
476 |
53 |
7 |
167 |
39 |
1 |
66 |
634 |
1189 |
78 |
5 |
196 |
104 |
1 |
1 |
24 |
3 |
399 |
52 |
43 |
2167 |
443 |
146 |
52 |
1688 |
227 |
137 |
4635 |
3 |
1487 |
78 |
41 |
0 |
58 |
1796 |
802 |
246 |
0 |
27 |
22 |
1 |
67 |
1 |
1048 |
Tabasco |
252 |
241 |
2661 |
769 |
7 |
4 |
442 |
13 |
1 |
0 |
360 |
143 |
0 |
142 |
182 |
3 |
0 |
411 |
881 |
1562 |
19 |
16 |
928 |
0 |
9 |
10 |
17 |
0 |
634 |
341 |
0 |
2524 |
798 |
418 |
55 |
1463 |
377 |
114 |
4802 |
0 |
670 |
9 |
30 |
2 |
0 |
33 |
3003 |
291 |
3 |
27 |
129 |
0 |
140 |
54 |
4255 |
Tamaulipas |
286 |
417 |
1262 |
616 |
2 |
28 |
140 |
13 |
2 |
0 |
275 |
408 |
51 |
22 |
317 |
0 |
0 |
41 |
832 |
1364 |
4 |
2 |
72 |
0 |
0 |
0 |
0 |
7 |
743 |
35 |
1 |
1942 |
854 |
307 |
53 |
1966 |
360 |
18 |
4545 |
0 |
961 |
415 |
15 |
2 |
0 |
91 |
1038 |
137 |
3 |
68 |
71 |
4 |
241 |
191 |
720 |
Tlaxcala |
67 |
21 |
154 |
51 |
7 |
0 |
9 |
6 |
0 |
0 |
2 |
22 |
2 |
0 |
17 |
0 |
0 |
9 |
273 |
898 |
4 |
47 |
80 |
5 |
1 |
3 |
6 |
0 |
215 |
15 |
26 |
127 |
39 |
11 |
1 |
98 |
20 |
7 |
20 |
0 |
47 |
0 |
0 |
1 |
0 |
117 |
16 |
28 |
0 |
0 |
1 |
0 |
0 |
0 |
133 |
Veracruz de Ignacio de la Llave |
661 |
569 |
4152 |
1084 |
42 |
14 |
95 |
32 |
1 |
0 |
324 |
497 |
0 |
259 |
285 |
13 |
0 |
909 |
1789 |
3517 |
91 |
130 |
1693 |
140 |
52 |
40 |
70 |
15 |
3433 |
298 |
57 |
2239 |
2488 |
852 |
444 |
4448 |
1572 |
506 |
6949 |
956 |
894 |
1060 |
12 |
7 |
1 |
511 |
4443 |
374 |
0 |
136 |
243 |
126 |
304 |
338 |
3644 |
Yucatán |
28 |
98 |
206 |
14 |
3 |
0 |
207 |
1 |
0 |
0 |
1 |
48 |
5 |
2 |
28 |
0 |
0 |
0 |
58 |
57 |
3 |
0 |
36 |
0 |
0 |
0 |
0 |
0 |
35 |
0 |
0 |
0 |
386 |
234 |
2 |
1075 |
15 |
124 |
632 |
0 |
146 |
36 |
6 |
3 |
6 |
125 |
1455 |
60 |
0 |
7 |
13 |
0 |
5 |
2 |
1464 |
Zacatecas |
621 |
199 |
1028 |
458 |
6 |
5 |
250 |
8 |
0 |
0 |
232 |
154 |
74 |
10 |
88 |
90 |
0 |
88 |
246 |
797 |
10 |
7 |
18 |
5 |
2 |
1 |
7 |
3 |
103 |
63 |
11 |
2174 |
766 |
209 |
255 |
1330 |
238 |
62 |
2179 |
0 |
334 |
74 |
20 |
5 |
0 |
187 |
713 |
123 |
2 |
85 |
54 |
4 |
204 |
135 |
927 |
Tasa por cada 100 mil habitantes
kable(tasaDelitoEstado2020)
Aguascalientes |
2.68 |
5.50 |
142.14 |
39.49 |
0.41 |
0.69 |
2.20 |
0.07 |
0.00 |
0.00 |
17.41 |
0.00 |
0.00 |
4.40 |
10.18 |
4.82 |
0.00 |
20.30 |
93.43 |
53.67 |
32.89 |
0.00 |
55.32 |
0.00 |
4.75 |
0.28 |
0.89 |
0.00 |
73.76 |
9.22 |
0.14 |
75.75 |
86.21 |
27.73 |
3.37 |
165.88 |
16.44 |
8.53 |
96.32 |
0.14 |
9.56 |
1.44 |
2.20 |
0.14 |
0.14 |
64.81 |
136.78 |
21.47 |
0.00 |
2.75 |
35.91 |
1.72 |
23.05 |
4.40 |
77.33 |
Baja California |
44.93 |
8.05 |
83.98 |
24.99 |
0.27 |
0.49 |
39.24 |
0.30 |
0.08 |
0.00 |
10.22 |
21.30 |
0.00 |
3.17 |
9.27 |
5.20 |
0.00 |
4.36 |
48.48 |
175.95 |
0.98 |
0.60 |
66.01 |
0.11 |
0.19 |
0.08 |
0.30 |
0.03 |
79.37 |
0.60 |
0.00 |
100.40 |
35.47 |
7.91 |
2.63 |
121.67 |
23.03 |
14.28 |
193.87 |
0.00 |
13.06 |
7.80 |
12.06 |
0.87 |
0.73 |
134.09 |
70.35 |
31.71 |
0.03 |
1.87 |
6.69 |
0.14 |
14.28 |
1.41 |
101.81 |
Baja California Sur |
3.78 |
4.26 |
103.77 |
28.87 |
0.49 |
0.85 |
9.99 |
0.49 |
0.12 |
0.00 |
17.78 |
19.61 |
9.26 |
1.71 |
14.13 |
4.02 |
0.00 |
5.85 |
70.64 |
36.66 |
1.34 |
0.12 |
8.53 |
3.04 |
0.24 |
0.24 |
0.24 |
0.12 |
40.56 |
3.53 |
0.24 |
172.95 |
79.78 |
21.80 |
5.85 |
98.41 |
26.43 |
5.85 |
178.67 |
0.73 |
52.25 |
20.34 |
3.90 |
0.24 |
0.12 |
33.62 |
111.20 |
12.79 |
0.00 |
8.89 |
8.40 |
0.37 |
18.03 |
1.22 |
55.78 |
Campeche |
4.82 |
4.42 |
6.19 |
4.33 |
0.49 |
0.00 |
1.87 |
0.10 |
0.00 |
0.00 |
0.59 |
2.85 |
0.00 |
0.00 |
3.64 |
10.62 |
0.00 |
0.69 |
9.14 |
24.19 |
0.79 |
0.39 |
2.65 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
11.01 |
1.28 |
0.20 |
7.18 |
0.39 |
0.10 |
0.79 |
8.65 |
0.20 |
1.57 |
1.57 |
0.00 |
0.10 |
0.00 |
0.00 |
0.20 |
0.10 |
8.46 |
2.65 |
1.28 |
0.00 |
0.00 |
0.10 |
0.00 |
0.00 |
0.20 |
2.85 |
Coahuila de Zaragoza |
2.64 |
3.80 |
69.97 |
12.27 |
0.28 |
0.12 |
0.64 |
0.09 |
0.00 |
0.00 |
1.10 |
14.47 |
6.44 |
0.34 |
5.06 |
4.75 |
0.00 |
1.29 |
35.97 |
8.37 |
2.51 |
0.21 |
4.57 |
0.83 |
0.31 |
0.21 |
0.40 |
0.06 |
17.42 |
1.47 |
1.59 |
49.40 |
26.80 |
11.35 |
0.52 |
123.08 |
8.16 |
25.79 |
221.88 |
0.40 |
3.83 |
3.37 |
0.89 |
0.18 |
0.00 |
180.11 |
101.00 |
12.02 |
0.00 |
0.31 |
2.67 |
0.06 |
11.65 |
2.67 |
32.32 |
Colima |
36.63 |
11.79 |
83.41 |
53.18 |
0.38 |
0.00 |
0.00 |
0.50 |
0.00 |
0.00 |
26.72 |
25.21 |
0.00 |
4.89 |
15.30 |
0.00 |
0.00 |
5.27 |
126.94 |
69.74 |
0.00 |
0.13 |
7.90 |
1.38 |
0.00 |
0.00 |
0.00 |
0.00 |
51.18 |
3.26 |
0.00 |
241.21 |
97.71 |
32.11 |
6.15 |
224.27 |
35.87 |
18.31 |
318.97 |
0.00 |
57.45 |
0.00 |
3.64 |
0.00 |
9.16 |
106.49 |
201.44 |
17.18 |
0.00 |
5.02 |
15.05 |
1.13 |
20.19 |
3.14 |
57.45 |
Chiapas |
4.83 |
7.50 |
6.38 |
6.59 |
0.53 |
0.10 |
1.48 |
0.09 |
0.02 |
0.00 |
2.00 |
2.10 |
0.88 |
0.22 |
5.11 |
0.05 |
0.00 |
7.57 |
1.55 |
15.43 |
0.00 |
0.00 |
1.31 |
0.50 |
0.00 |
0.09 |
0.07 |
0.03 |
2.55 |
0.50 |
0.14 |
7.42 |
2.56 |
0.58 |
0.45 |
10.25 |
1.69 |
2.00 |
42.74 |
0.00 |
2.84 |
0.03 |
0.50 |
0.05 |
1.10 |
11.73 |
4.13 |
0.88 |
0.05 |
0.14 |
0.86 |
0.50 |
1.41 |
0.38 |
10.86 |
Chihuahua |
32.45 |
4.61 |
71.71 |
22.76 |
0.63 |
0.08 |
6.72 |
0.47 |
0.05 |
0.00 |
9.46 |
25.52 |
0.00 |
3.05 |
16.00 |
4.69 |
0.00 |
5.58 |
37.66 |
57.94 |
8.81 |
0.23 |
5.21 |
1.67 |
0.10 |
0.08 |
0.29 |
0.03 |
26.04 |
2.37 |
2.74 |
65.29 |
55.23 |
14.05 |
0.10 |
132.78 |
14.60 |
9.93 |
193.04 |
0.39 |
27.24 |
0.47 |
1.07 |
0.36 |
0.03 |
93.50 |
56.46 |
15.64 |
0.00 |
3.36 |
21.82 |
2.11 |
22.60 |
1.64 |
29.84 |
Ciudad de México |
6.28 |
4.12 |
29.11 |
27.00 |
0.39 |
0.58 |
1.71 |
0.22 |
0.01 |
0.09 |
13.38 |
25.07 |
9.05 |
0.00 |
9.06 |
5.30 |
0.00 |
10.17 |
24.78 |
49.69 |
54.39 |
1.04 |
71.84 |
18.88 |
3.55 |
23.69 |
16.25 |
0.11 |
84.32 |
0.00 |
0.17 |
162.36 |
117.91 |
29.67 |
3.00 |
67.90 |
29.39 |
28.62 |
225.92 |
0.00 |
5.50 |
0.09 |
2.01 |
0.58 |
15.07 |
34.00 |
109.96 |
6.12 |
0.10 |
2.60 |
17.13 |
6.11 |
31.89 |
5.69 |
38.15 |
Durango |
4.24 |
7.43 |
83.41 |
37.35 |
0.37 |
0.00 |
0.42 |
0.00 |
0.00 |
0.00 |
6.42 |
16.66 |
2.97 |
0.32 |
11.20 |
0.27 |
0.00 |
8.91 |
82.88 |
29.02 |
4.30 |
0.16 |
13.37 |
0.37 |
0.85 |
0.32 |
0.16 |
0.05 |
31.31 |
3.02 |
0.32 |
109.04 |
59.06 |
19.84 |
2.76 |
85.27 |
14.11 |
2.07 |
184.07 |
0.00 |
2.55 |
16.18 |
0.05 |
0.00 |
0.42 |
30.40 |
41.76 |
5.73 |
0.00 |
0.90 |
3.82 |
0.00 |
3.77 |
0.37 |
34.81 |
Guanajuato |
27.24 |
8.12 |
113.87 |
0.25 |
0.32 |
0.29 |
5.95 |
0.11 |
0.00 |
0.00 |
0.00 |
12.15 |
2.28 |
0.46 |
7.34 |
0.78 |
0.03 |
0.22 |
39.20 |
33.64 |
0.00 |
0.06 |
1.82 |
0.00 |
0.00 |
0.00 |
0.00 |
0.02 |
39.41 |
1.59 |
0.00 |
166.11 |
32.94 |
13.71 |
1.62 |
96.01 |
13.63 |
1.48 |
107.14 |
0.00 |
17.93 |
0.45 |
2.82 |
0.00 |
0.00 |
207.37 |
90.99 |
3.82 |
0.06 |
1.88 |
4.20 |
0.03 |
1.45 |
0.61 |
160.65 |
Guerrero |
18.67 |
6.43 |
35.38 |
8.91 |
0.19 |
0.08 |
0.65 |
0.14 |
0.08 |
0.00 |
6.38 |
5.45 |
1.61 |
0.22 |
3.41 |
2.62 |
0.00 |
0.00 |
5.07 |
29.49 |
0.35 |
0.00 |
3.52 |
0.41 |
0.00 |
0.14 |
0.00 |
0.00 |
14.72 |
0.44 |
0.11 |
40.50 |
11.01 |
5.04 |
3.52 |
30.39 |
8.53 |
0.00 |
56.42 |
3.90 |
8.75 |
2.51 |
0.19 |
0.03 |
0.00 |
16.41 |
34.75 |
3.19 |
0.00 |
1.28 |
3.38 |
0.19 |
2.81 |
0.33 |
16.57 |
Hidalgo |
4.07 |
5.67 |
65.45 |
32.07 |
0.35 |
0.48 |
2.88 |
0.51 |
0.06 |
0.03 |
28.26 |
13.30 |
0.00 |
1.54 |
7.56 |
6.44 |
0.00 |
1.67 |
26.05 |
53.12 |
0.74 |
1.06 |
11.79 |
2.02 |
0.90 |
0.16 |
1.03 |
0.00 |
17.94 |
1.06 |
0.19 |
77.50 |
24.70 |
7.11 |
1.63 |
38.38 |
14.26 |
2.21 |
103.42 |
0.00 |
11.34 |
0.10 |
0.58 |
0.03 |
0.13 |
19.51 |
35.98 |
5.45 |
0.06 |
1.31 |
3.33 |
0.00 |
7.59 |
2.02 |
151.31 |
Jalisco |
13.31 |
6.23 |
55.46 |
17.74 |
0.53 |
0.07 |
0.00 |
0.15 |
0.01 |
0.00 |
5.38 |
16.63 |
1.90 |
0.61 |
3.55 |
0.00 |
0.00 |
7.40 |
26.92 |
83.56 |
12.28 |
2.32 |
50.35 |
3.05 |
1.40 |
2.16 |
1.50 |
0.13 |
54.78 |
0.91 |
3.12 |
108.82 |
50.37 |
9.83 |
4.11 |
52.83 |
11.64 |
0.00 |
89.50 |
0.00 |
0.00 |
6.61 |
0.95 |
0.08 |
0.04 |
7.34 |
70.86 |
1.94 |
0.04 |
0.68 |
10.00 |
0.31 |
3.83 |
0.06 |
74.43 |
México |
7.50 |
4.47 |
161.49 |
31.93 |
0.44 |
0.53 |
3.47 |
0.42 |
0.00 |
0.00 |
11.19 |
13.96 |
4.59 |
0.38 |
4.88 |
3.79 |
0.00 |
0.33 |
29.26 |
117.23 |
11.82 |
15.07 |
74.93 |
0.50 |
3.68 |
23.25 |
34.23 |
0.05 |
67.22 |
0.67 |
0.04 |
73.06 |
45.22 |
13.59 |
10.59 |
47.52 |
16.85 |
0.35 |
75.18 |
7.15 |
8.32 |
0.03 |
0.30 |
0.52 |
14.48 |
12.22 |
0.00 |
5.94 |
0.07 |
0.40 |
5.06 |
1.20 |
13.03 |
1.64 |
288.53 |
Michoacán de Ocampo |
25.79 |
12.00 |
78.00 |
14.27 |
0.25 |
0.27 |
2.92 |
0.39 |
0.00 |
0.00 |
4.24 |
6.98 |
2.00 |
0.43 |
5.17 |
1.59 |
0.00 |
3.17 |
15.17 |
63.69 |
0.33 |
12.43 |
5.64 |
0.72 |
0.45 |
0.72 |
0.25 |
0.16 |
8.46 |
0.93 |
0.99 |
39.85 |
29.54 |
6.81 |
0.84 |
43.68 |
11.94 |
3.93 |
14.45 |
0.00 |
1.79 |
0.00 |
0.29 |
0.06 |
0.06 |
30.01 |
55.05 |
3.52 |
0.00 |
0.47 |
9.74 |
1.54 |
3.81 |
1.98 |
36.70 |
Morelos |
28.47 |
8.77 |
24.12 |
76.46 |
1.02 |
0.34 |
15.88 |
0.48 |
0.00 |
0.10 |
6.78 |
15.88 |
0.92 |
2.42 |
13.37 |
0.00 |
0.00 |
1.74 |
44.41 |
108.72 |
40.19 |
6.63 |
22.57 |
2.28 |
0.73 |
1.79 |
1.74 |
0.63 |
69.15 |
1.69 |
0.10 |
115.45 |
49.30 |
19.76 |
4.16 |
69.88 |
37.87 |
14.48 |
144.07 |
0.00 |
6.92 |
10.56 |
0.82 |
0.10 |
0.58 |
23.29 |
131.62 |
11.09 |
0.15 |
3.10 |
4.60 |
0.24 |
1.16 |
0.39 |
46.30 |
Nayarit |
9.34 |
7.81 |
8.73 |
2.14 |
0.15 |
0.23 |
0.54 |
0.46 |
0.00 |
0.00 |
3.14 |
0.00 |
0.77 |
0.00 |
7.81 |
1.15 |
0.00 |
5.28 |
5.67 |
18.37 |
1.00 |
0.00 |
0.00 |
0.08 |
0.08 |
0.00 |
0.00 |
0.00 |
4.44 |
0.08 |
0.00 |
7.50 |
5.74 |
1.07 |
0.69 |
6.12 |
1.84 |
0.23 |
46.24 |
0.00 |
21.59 |
0.54 |
0.77 |
0.08 |
0.31 |
3.98 |
4.67 |
2.22 |
0.00 |
0.23 |
0.15 |
0.08 |
0.38 |
0.15 |
37.82 |
Nuevo León |
10.61 |
6.17 |
43.39 |
15.53 |
0.44 |
1.18 |
3.71 |
0.21 |
0.00 |
1.21 |
25.24 |
17.43 |
6.00 |
0.60 |
9.04 |
4.82 |
0.02 |
8.74 |
24.04 |
32.26 |
0.83 |
1.90 |
7.88 |
5.66 |
0.69 |
0.26 |
0.28 |
0.04 |
13.00 |
1.20 |
0.39 |
47.82 |
57.72 |
10.46 |
5.38 |
60.98 |
14.67 |
1.14 |
213.34 |
0.00 |
5.17 |
64.26 |
1.53 |
1.37 |
0.00 |
45.62 |
53.52 |
4.17 |
0.11 |
1.81 |
17.43 |
0.02 |
20.40 |
8.86 |
43.25 |
Oaxaca |
10.03 |
14.07 |
55.53 |
13.92 |
0.65 |
0.14 |
2.83 |
0.31 |
0.02 |
0.00 |
2.66 |
8.16 |
3.65 |
1.01 |
5.59 |
4.97 |
0.00 |
0.43 |
13.13 |
31.35 |
1.44 |
0.84 |
24.08 |
2.95 |
2.78 |
2.11 |
0.22 |
0.29 |
15.53 |
1.10 |
0.41 |
39.20 |
26.36 |
7.18 |
1.75 |
37.64 |
15.87 |
8.02 |
98.50 |
0.10 |
1.85 |
3.48 |
0.29 |
0.22 |
7.97 |
3.67 |
65.15 |
4.11 |
0.02 |
4.95 |
5.31 |
0.00 |
5.40 |
6.27 |
22.33 |
Puebla |
6.78 |
3.20 |
49.53 |
8.63 |
0.41 |
0.06 |
2.43 |
0.14 |
0.00 |
0.00 |
2.28 |
7.10 |
2.48 |
0.44 |
4.68 |
3.74 |
0.00 |
10.49 |
21.88 |
68.15 |
9.77 |
8.39 |
31.04 |
0.00 |
0.95 |
3.33 |
11.76 |
0.08 |
33.29 |
1.04 |
4.23 |
50.07 |
39.58 |
13.35 |
1.14 |
36.40 |
16.38 |
2.48 |
78.46 |
0.00 |
2.61 |
5.18 |
0.20 |
0.44 |
6.06 |
17.36 |
51.07 |
3.33 |
0.03 |
1.08 |
3.11 |
0.27 |
10.86 |
2.03 |
16.14 |
Querétaro |
4.79 |
7.80 |
123.43 |
25.22 |
0.30 |
0.95 |
31.90 |
0.26 |
0.00 |
0.00 |
3.45 |
17.37 |
17.72 |
0.00 |
10.78 |
6.21 |
0.00 |
1.25 |
60.31 |
89.03 |
14.83 |
0.00 |
34.45 |
2.24 |
4.14 |
8.62 |
7.46 |
0.00 |
53.24 |
4.79 |
0.30 |
263.85 |
86.87 |
19.96 |
6.60 |
39.75 |
24.62 |
1.47 |
96.83 |
2.16 |
13.36 |
6.12 |
0.00 |
0.09 |
12.89 |
27.98 |
108.69 |
6.73 |
0.09 |
3.32 |
4.44 |
0.09 |
0.00 |
2.46 |
106.14 |
Quintana Roo |
18.62 |
29.64 |
86.86 |
40.03 |
0.85 |
0.23 |
12.26 |
0.51 |
0.06 |
0.00 |
30.20 |
29.98 |
9.37 |
1.59 |
26.29 |
0.00 |
0.00 |
13.80 |
48.20 |
85.39 |
2.84 |
0.85 |
57.51 |
16.52 |
1.99 |
3.29 |
0.97 |
0.00 |
68.70 |
0.74 |
29.69 |
191.72 |
13.85 |
91.69 |
4.26 |
138.64 |
29.41 |
9.59 |
202.23 |
0.00 |
21.12 |
21.18 |
3.69 |
0.74 |
0.06 |
37.30 |
85.84 |
8.69 |
0.00 |
11.01 |
8.97 |
2.55 |
19.98 |
3.63 |
38.55 |
San Luis Potosí |
13.90 |
5.41 |
81.82 |
11.78 |
0.55 |
0.21 |
5.54 |
0.35 |
0.14 |
0.00 |
14.24 |
12.96 |
6.00 |
0.83 |
13.76 |
0.00 |
0.00 |
6.65 |
24.19 |
67.09 |
15.00 |
7.10 |
14.21 |
0.83 |
0.69 |
0.52 |
0.14 |
0.03 |
33.09 |
4.44 |
3.29 |
83.52 |
45.22 |
17.71 |
2.50 |
111.58 |
13.24 |
38.47 |
190.94 |
0.00 |
9.77 |
0.10 |
0.35 |
0.21 |
0.00 |
19.89 |
58.56 |
11.78 |
0.00 |
0.00 |
2.67 |
1.73 |
12.44 |
1.04 |
48.86 |
Sinaloa |
10.56 |
12.32 |
50.76 |
13.55 |
0.75 |
0.13 |
10.59 |
0.16 |
0.06 |
0.00 |
22.88 |
7.32 |
1.45 |
0.19 |
3.99 |
1.63 |
0.00 |
0.85 |
6.07 |
63.90 |
0.16 |
0.03 |
0.72 |
0.03 |
0.22 |
0.06 |
0.35 |
0.35 |
22.41 |
0.31 |
0.00 |
42.37 |
12.48 |
6.10 |
1.19 |
41.21 |
10.72 |
0.60 |
108.44 |
0.00 |
2.80 |
3.02 |
1.19 |
0.09 |
1.67 |
2.80 |
24.92 |
1.10 |
0.06 |
1.01 |
2.92 |
0.00 |
3.33 |
1.32 |
6.10 |
Sonora |
30.44 |
6.88 |
41.91 |
18.93 |
0.87 |
0.32 |
7.46 |
0.13 |
0.00 |
0.13 |
12.54 |
15.30 |
1.70 |
0.22 |
5.37 |
1.25 |
0.03 |
2.12 |
20.38 |
38.22 |
2.51 |
0.16 |
6.30 |
3.34 |
0.03 |
0.03 |
0.77 |
0.10 |
12.82 |
1.67 |
1.38 |
69.65 |
14.24 |
4.69 |
1.67 |
54.26 |
7.30 |
4.40 |
148.98 |
0.10 |
47.80 |
2.51 |
1.32 |
0.00 |
1.86 |
57.73 |
25.78 |
7.91 |
0.00 |
0.87 |
0.71 |
0.03 |
2.15 |
0.03 |
33.69 |
Tabasco |
9.69 |
9.27 |
102.36 |
29.58 |
0.27 |
0.15 |
17.00 |
0.50 |
0.04 |
0.00 |
13.85 |
5.50 |
0.00 |
5.46 |
7.00 |
0.12 |
0.00 |
15.81 |
33.89 |
60.08 |
0.73 |
0.62 |
35.70 |
0.00 |
0.35 |
0.38 |
0.65 |
0.00 |
24.39 |
13.12 |
0.00 |
97.09 |
30.70 |
16.08 |
2.12 |
56.28 |
14.50 |
4.39 |
184.72 |
0.00 |
25.77 |
0.35 |
1.15 |
0.08 |
0.00 |
1.27 |
115.52 |
11.19 |
0.12 |
1.04 |
4.96 |
0.00 |
5.39 |
2.08 |
163.68 |
Tamaulipas |
7.77 |
11.33 |
34.30 |
16.74 |
0.05 |
0.76 |
3.80 |
0.35 |
0.05 |
0.00 |
7.47 |
11.09 |
1.39 |
0.60 |
8.62 |
0.00 |
0.00 |
1.11 |
22.61 |
37.07 |
0.11 |
0.05 |
1.96 |
0.00 |
0.00 |
0.00 |
0.00 |
0.19 |
20.19 |
0.95 |
0.03 |
52.78 |
23.21 |
8.34 |
1.44 |
53.43 |
9.78 |
0.49 |
123.52 |
0.00 |
26.12 |
11.28 |
0.41 |
0.05 |
0.00 |
2.47 |
28.21 |
3.72 |
0.08 |
1.85 |
1.93 |
0.11 |
6.55 |
5.19 |
19.57 |
Tlaxcala |
4.80 |
1.50 |
11.04 |
3.65 |
0.50 |
0.00 |
0.64 |
0.43 |
0.00 |
0.00 |
0.14 |
1.58 |
0.14 |
0.00 |
1.22 |
0.00 |
0.00 |
0.64 |
19.56 |
64.35 |
0.29 |
3.37 |
5.73 |
0.36 |
0.07 |
0.21 |
0.43 |
0.00 |
15.41 |
1.07 |
1.86 |
9.10 |
2.79 |
0.79 |
0.07 |
7.02 |
1.43 |
0.50 |
1.43 |
0.00 |
3.37 |
0.00 |
0.00 |
0.07 |
0.00 |
8.38 |
1.15 |
2.01 |
0.00 |
0.00 |
0.07 |
0.00 |
0.00 |
0.00 |
9.53 |
Veracruz de Ignacio de la Llave |
7.70 |
6.63 |
48.34 |
12.62 |
0.49 |
0.16 |
1.11 |
0.37 |
0.01 |
0.00 |
3.77 |
5.79 |
0.00 |
3.02 |
3.32 |
0.15 |
0.00 |
10.58 |
20.83 |
40.95 |
1.06 |
1.51 |
19.71 |
1.63 |
0.61 |
0.47 |
0.82 |
0.17 |
39.97 |
3.47 |
0.66 |
26.07 |
28.97 |
9.92 |
5.17 |
51.79 |
18.30 |
5.89 |
80.91 |
11.13 |
10.41 |
12.34 |
0.14 |
0.08 |
0.01 |
5.95 |
51.73 |
4.35 |
0.00 |
1.58 |
2.83 |
1.47 |
3.54 |
3.94 |
42.43 |
Yucatán |
1.23 |
4.29 |
9.02 |
0.61 |
0.13 |
0.00 |
9.06 |
0.04 |
0.00 |
0.00 |
0.04 |
2.10 |
0.22 |
0.09 |
1.23 |
0.00 |
0.00 |
0.00 |
2.54 |
2.50 |
0.13 |
0.00 |
1.58 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
1.53 |
0.00 |
0.00 |
0.00 |
16.90 |
10.25 |
0.09 |
47.07 |
0.66 |
5.43 |
27.67 |
0.00 |
6.39 |
1.58 |
0.26 |
0.13 |
0.26 |
5.47 |
63.71 |
2.63 |
0.00 |
0.31 |
0.57 |
0.00 |
0.22 |
0.09 |
64.10 |
Zacatecas |
37.01 |
11.86 |
61.27 |
27.30 |
0.36 |
0.30 |
14.90 |
0.48 |
0.00 |
0.00 |
13.83 |
9.18 |
4.41 |
0.60 |
5.24 |
5.36 |
0.00 |
5.24 |
14.66 |
47.50 |
0.60 |
0.42 |
1.07 |
0.30 |
0.12 |
0.06 |
0.42 |
0.18 |
6.14 |
3.75 |
0.66 |
129.57 |
45.65 |
12.46 |
15.20 |
79.27 |
14.18 |
3.70 |
129.86 |
0.00 |
19.91 |
4.41 |
1.19 |
0.30 |
0.00 |
11.14 |
42.49 |
7.33 |
0.12 |
5.07 |
3.22 |
0.24 |
12.16 |
8.05 |
55.25 |
Posicion de queretaro en 2020 por tipo de delito
posicionAnualporDelito<-c()
for (i in 1:length(losDelitos)) {
a<-tasaDelitoEstado2020[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaDelitoEstado2020[tasaDelitoEstado2020[i+1]>a,i+1])}
posicionAnualporDelito<-c(posicionAnualporDelito,b)
}
posicionesAnualporDelito<-data.frame(losDelitos, posicionAnualporDelito)
posicionesAnualporDelito<-posicionesAnualporDelito[order(posicionesAnualporDelito$posicionAnualporDelito),]
names(posicionesAnualporDelito)<-c("Subtipo de delito", "Posición que ocupa Querétaro a nivel nacional en ese delito")
kable(posicionesAnualporDelito[posicionesAnualporDelito[2]>0,])
13 |
Acoso sexual |
1 |
32 |
Otros robos |
1 |
6 |
Aborto |
2 |
7 |
Otros delitos que atentan contra la vida y la integridad corporal |
2 |
25 |
Robo en transporte público individual |
2 |
3 |
Lesiones dolosas |
3 |
16 |
Violación equiparada |
3 |
26 |
Robo en transporte público colectivo |
3 |
30 |
Robo de ganado |
3 |
33 |
Fraude |
3 |
35 |
Extorsión |
3 |
45 |
Otros delitos contra la sociedad |
3 |
20 |
Robo de vehículo automotor |
4 |
27 |
Robo en transporte individual |
4 |
40 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
4 |
19 |
Robo a casa habitación |
5 |
21 |
Robo de autopartes |
5 |
55 |
Otros delitos del Fuero Común |
5 |
34 |
Abuso de confianza |
6 |
37 |
Despojo |
6 |
49 |
Evasión de presos |
6 |
47 |
Amenazas |
7 |
50 |
Falsedad |
7 |
12 |
Abuso sexual |
8 |
15 |
Violación simple |
8 |
23 |
Robo a transeúnte en vía pública |
8 |
29 |
Robo a negocio |
8 |
24 |
Robo a transeúnte en espacio abierto al público |
9 |
42 |
Otros delitos contra la familia |
10 |
41 |
Incumplimiento de obligaciones de asistencia familiar |
11 |
54 |
Electorales |
11 |
4 |
Lesiones culposas |
12 |
2 |
Homicidio culposo |
13 |
48 |
Allanamiento de morada |
13 |
46 |
Narcomenudeo |
14 |
31 |
Robo de maquinaria |
15 |
51 |
Falsificación |
15 |
44 |
Trata de personas |
17 |
8 |
Secuestro |
18 |
52 |
Contra el medio ambiente |
19 |
39 |
Violencia familiar |
20 |
11 |
Otros delitos que atentan contra la libertad personal |
23 |
18 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
23 |
5 |
Feminicidio |
24 |
36 |
Daño a la propiedad |
24 |
38 |
Otros delitos contra el patrimonio |
24 |
1 |
Homicidio doloso |
26 |
Querétaro en Julio
losDelitosMes<-unique(delitos2$Subtipo.de.delito)
losDelitos2020Mes<-subset(losDelitos2020, losDelitos2020$meses==esteMes)
delitoEstado2020mes=as.data.frame(order(unique(losDelitos2020Mes$Clave_Ent)))
for (i in 1:length(losDelitosMes)) {
a<-subset(losDelitos2020Mes,losDelitos2020Mes$Subtipo.de.delito==losDelitosMes[i])
b<-as.data.frame(aggregate(a$value~a$Clave_Ent,a,sum))[2]
delitoEstado2020mes<-cbind(delitoEstado2020mes,b)
}
names(delitoEstado2020mes)<-c("claveEntidad",losDelitosMes)
tasaDelitoEstado2020mes<-delitoEstado2020mes
tasaDelitoEstado2020mes[,2:56]<-round(delitoEstado2020mes[,2:56]/ent[,micol]*100000,2)
for (i in 1:length(nomEnt)) {
delitoEstado2020mes[i,1]<-nomEnt[i]
tasaDelitoEstado2020mes[i,1]<-nomEnt[i]
}
posicionAnualporDelitoMes<-c()
for (i in 1:length(losDelitos)) {
a<-tasaDelitoEstado2020mes[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaDelitoEstado2020mes[tasaDelitoEstado2020mes[i+1]>a,i+1])}
posicionAnualporDelitoMes<-c(posicionAnualporDelitoMes,b)
}
posicionesAnualporDelitoMes<-data.frame(losDelitosMes, posicionAnualporDelitoMes)
posicionesAnualporDelitoMes<-posicionesAnualporDelitoMes[order(posicionesAnualporDelitoMes$posicionAnualporDelitoMes),]
names(posicionesAnualporDelitoMes)<-c("Subtipo de delito", "Posición que ocupa Querétaro a nivel nacional en ese delito en el mes")
kable(posicionesAnualporDelitoMes[posicionesAnualporDelitoMes[2]>0,],caption="Posición de Querétaro en el mes")
Posición de Querétaro en el mes
13 |
Acoso sexual |
1 |
32 |
Otros robos |
1 |
6 |
Aborto |
2 |
7 |
Otros delitos que atentan contra la vida y la integridad corporal |
2 |
3 |
Lesiones dolosas |
3 |
26 |
Robo en transporte público colectivo |
3 |
30 |
Robo de ganado |
3 |
45 |
Otros delitos contra la sociedad |
3 |
16 |
Violación equiparada |
4 |
20 |
Robo de vehículo automotor |
4 |
27 |
Robo en transporte individual |
4 |
33 |
Fraude |
4 |
35 |
Extorsión |
4 |
40 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
4 |
55 |
Otros delitos del Fuero Común |
4 |
12 |
Abuso sexual |
5 |
19 |
Robo a casa habitación |
5 |
25 |
Robo en transporte público individual |
5 |
37 |
Despojo |
6 |
15 |
Violación simple |
7 |
29 |
Robo a negocio |
7 |
21 |
Robo de autopartes |
8 |
23 |
Robo a transeúnte en vía pública |
8 |
34 |
Abuso de confianza |
8 |
42 |
Otros delitos contra la familia |
8 |
47 |
Amenazas |
8 |
31 |
Robo de maquinaria |
9 |
4 |
Lesiones culposas |
11 |
50 |
Falsedad |
11 |
54 |
Electorales |
11 |
46 |
Narcomenudeo |
12 |
48 |
Allanamiento de morada |
12 |
2 |
Homicidio culposo |
13 |
41 |
Incumplimiento de obligaciones de asistencia familiar |
13 |
5 |
Feminicidio |
15 |
24 |
Robo a transeúnte en espacio abierto al público |
15 |
39 |
Violencia familiar |
16 |
11 |
Otros delitos que atentan contra la libertad personal |
19 |
36 |
Daño a la propiedad |
21 |
38 |
Otros delitos contra el patrimonio |
22 |
51 |
Falsificación |
23 |
18 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
24 |
1 |
Homicidio doloso |
26 |
Tasa en el mes
kable(tasaDelitoEstado2020mes)
Aguascalientes |
0.41 |
0.62 |
19.40 |
5.71 |
0.07 |
0.28 |
0.28 |
0.00 |
0.00 |
0.00 |
2.06 |
0.00 |
0.00 |
0.83 |
1.93 |
0.28 |
0 |
2.13 |
13.76 |
8.74 |
6.12 |
0.00 |
7.77 |
0.00 |
0.62 |
0.00 |
0.28 |
0.00 |
11.77 |
0.69 |
0.07 |
10.94 |
13.00 |
4.88 |
0.28 |
23.32 |
2.34 |
1.65 |
14.86 |
0.07 |
2.27 |
0.14 |
0.14 |
0.00 |
0.00 |
2.68 |
18.99 |
2.89 |
0.00 |
0.48 |
4.27 |
0.41 |
1.58 |
0.14 |
12.52 |
Baja California |
6.64 |
1.30 |
14.53 |
4.04 |
0.08 |
0.14 |
6.64 |
0.11 |
0.05 |
0.00 |
1.76 |
3.90 |
0.00 |
0.62 |
1.33 |
1.06 |
0 |
1.19 |
6.45 |
26.53 |
0.14 |
0.11 |
10.16 |
0.03 |
0.03 |
0.03 |
0.14 |
0.03 |
12.11 |
0.03 |
0.00 |
16.86 |
6.29 |
1.35 |
0.38 |
19.35 |
3.82 |
2.03 |
34.12 |
0.00 |
2.36 |
1.25 |
2.38 |
0.19 |
0.05 |
14.39 |
11.25 |
5.04 |
0.00 |
0.43 |
1.19 |
0.05 |
2.30 |
0.00 |
15.77 |
Baja California Sur |
0.37 |
0.37 |
15.35 |
5.24 |
0.00 |
0.00 |
0.24 |
0.00 |
0.12 |
0.00 |
1.83 |
2.31 |
0.73 |
0.37 |
2.19 |
0.24 |
0 |
0.97 |
9.74 |
4.02 |
0.12 |
0.00 |
1.10 |
0.85 |
0.00 |
0.00 |
0.00 |
0.00 |
5.36 |
0.61 |
0.00 |
23.63 |
11.21 |
3.17 |
1.22 |
12.06 |
3.17 |
0.49 |
24.12 |
0.12 |
6.09 |
3.17 |
0.37 |
0.12 |
0.12 |
4.87 |
15.10 |
1.83 |
0.00 |
1.46 |
1.10 |
0.00 |
1.46 |
0.00 |
7.06 |
Campeche |
0.69 |
0.69 |
0.79 |
0.69 |
0.10 |
0.00 |
0.20 |
0.00 |
0.00 |
0.00 |
0.10 |
0.49 |
0.00 |
0.00 |
0.49 |
0.69 |
0 |
0.20 |
1.38 |
2.65 |
0.20 |
0.00 |
0.49 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
1.67 |
0.20 |
0.00 |
1.87 |
0.10 |
0.00 |
0.00 |
1.28 |
0.10 |
0.39 |
0.10 |
0.00 |
0.10 |
0.00 |
0.00 |
0.20 |
0.00 |
1.28 |
0.20 |
0.10 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.29 |
Coahuila de Zaragoza |
0.43 |
0.61 |
11.68 |
2.27 |
0.03 |
0.06 |
0.12 |
0.03 |
0.00 |
0.00 |
0.09 |
2.24 |
0.92 |
0.09 |
0.77 |
0.74 |
0 |
0.12 |
6.99 |
1.32 |
0.55 |
0.00 |
0.52 |
0.25 |
0.06 |
0.03 |
0.09 |
0.00 |
2.05 |
0.31 |
0.25 |
11.35 |
4.48 |
1.87 |
0.06 |
20.18 |
1.26 |
4.23 |
36.95 |
0.09 |
0.77 |
0.71 |
0.18 |
0.00 |
0.00 |
29.31 |
16.37 |
1.96 |
0.00 |
0.09 |
0.40 |
0.03 |
1.50 |
0.18 |
5.76 |
Colima |
5.02 |
2.26 |
12.29 |
6.90 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
3.51 |
3.14 |
0.00 |
0.75 |
2.76 |
0.00 |
0 |
0.25 |
21.70 |
11.29 |
0.00 |
0.00 |
0.50 |
1.38 |
0.00 |
0.00 |
0.00 |
0.00 |
8.65 |
0.25 |
0.00 |
37.50 |
13.42 |
5.39 |
0.38 |
29.73 |
5.02 |
3.64 |
48.42 |
0.00 |
7.78 |
0.00 |
0.13 |
0.00 |
1.13 |
16.31 |
29.73 |
2.76 |
0.00 |
0.25 |
1.63 |
0.75 |
1.38 |
0.00 |
9.16 |
Chiapas |
0.65 |
0.96 |
0.71 |
0.83 |
0.05 |
0.02 |
0.19 |
0.03 |
0.00 |
0.00 |
0.22 |
0.36 |
0.09 |
0.02 |
0.72 |
0.02 |
0 |
1.07 |
0.22 |
2.29 |
0.00 |
0.00 |
0.10 |
0.07 |
0.00 |
0.05 |
0.00 |
0.00 |
0.34 |
0.00 |
0.00 |
1.12 |
0.28 |
0.03 |
0.07 |
1.14 |
0.33 |
0.14 |
6.21 |
0.00 |
0.41 |
0.00 |
0.12 |
0.00 |
0.14 |
2.20 |
0.93 |
0.24 |
0.00 |
0.02 |
0.19 |
0.17 |
0.21 |
0.00 |
1.86 |
Chihuahua |
5.13 |
0.76 |
10.53 |
2.87 |
0.05 |
0.00 |
1.04 |
0.05 |
0.00 |
0.00 |
1.07 |
4.09 |
0.00 |
0.29 |
2.87 |
0.57 |
0 |
0.86 |
5.73 |
9.70 |
1.43 |
0.05 |
0.78 |
0.29 |
0.05 |
0.00 |
0.08 |
0.03 |
3.62 |
0.21 |
0.34 |
10.97 |
8.89 |
2.37 |
0.00 |
19.42 |
1.98 |
1.33 |
28.91 |
0.05 |
3.70 |
0.10 |
0.08 |
0.03 |
0.00 |
8.42 |
7.87 |
1.82 |
0.00 |
0.42 |
3.15 |
0.26 |
3.26 |
0.16 |
4.12 |
Ciudad de México |
0.93 |
0.51 |
4.20 |
3.87 |
0.03 |
0.09 |
0.19 |
0.02 |
0.00 |
0.01 |
2.02 |
3.53 |
1.35 |
0.00 |
1.29 |
0.73 |
0 |
1.53 |
3.64 |
6.34 |
7.25 |
0.06 |
11.05 |
3.57 |
0.47 |
3.91 |
1.88 |
0.04 |
12.08 |
0.00 |
0.02 |
25.11 |
19.96 |
4.82 |
0.43 |
9.52 |
4.36 |
4.03 |
31.29 |
0.00 |
1.06 |
0.01 |
0.28 |
0.11 |
2.48 |
5.92 |
15.43 |
0.96 |
0.00 |
0.51 |
2.71 |
0.89 |
5.28 |
0.34 |
6.89 |
Durango |
0.32 |
1.33 |
11.04 |
5.52 |
0.05 |
0.00 |
0.11 |
0.00 |
0.00 |
0.00 |
0.64 |
2.39 |
0.42 |
0.05 |
1.27 |
0.00 |
0 |
1.01 |
10.93 |
4.35 |
0.90 |
0.00 |
2.55 |
0.11 |
0.27 |
0.00 |
0.00 |
0.05 |
4.19 |
0.11 |
0.05 |
16.29 |
6.37 |
2.87 |
0.48 |
11.25 |
1.75 |
0.11 |
25.73 |
0.00 |
0.80 |
3.13 |
0.00 |
0.00 |
0.00 |
4.35 |
5.84 |
0.80 |
0.00 |
0.16 |
0.69 |
0.00 |
0.37 |
0.00 |
3.45 |
Guanajuato |
3.85 |
1.32 |
14.90 |
0.05 |
0.03 |
0.06 |
0.92 |
0.03 |
0.00 |
0.00 |
0.00 |
1.83 |
0.32 |
0.10 |
1.03 |
0.14 |
0 |
0.02 |
5.75 |
5.32 |
0.00 |
0.00 |
0.29 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
5.22 |
0.21 |
0.00 |
24.19 |
5.27 |
2.20 |
0.37 |
13.88 |
1.93 |
0.32 |
16.10 |
0.00 |
3.10 |
0.05 |
0.49 |
0.00 |
0.00 |
22.94 |
12.96 |
0.56 |
0.00 |
0.30 |
0.59 |
0.02 |
0.29 |
0.00 |
23.34 |
Guerrero |
2.56 |
1.06 |
5.37 |
1.23 |
0.00 |
0.00 |
0.03 |
0.00 |
0.00 |
0.00 |
1.01 |
0.79 |
0.41 |
0.03 |
0.44 |
0.38 |
0 |
0.00 |
0.52 |
4.14 |
0.05 |
0.00 |
0.16 |
0.00 |
0.00 |
0.11 |
0.00 |
0.00 |
2.48 |
0.05 |
0.05 |
5.40 |
2.02 |
0.95 |
0.44 |
4.42 |
1.25 |
0.00 |
7.25 |
0.87 |
1.31 |
0.19 |
0.03 |
0.00 |
0.00 |
2.53 |
5.45 |
0.57 |
0.00 |
0.14 |
0.60 |
0.00 |
0.33 |
0.00 |
2.10 |
Hidalgo |
0.48 |
0.77 |
7.37 |
4.81 |
0.00 |
0.03 |
0.26 |
0.06 |
0.00 |
0.00 |
4.16 |
1.67 |
0.00 |
0.13 |
0.96 |
0.83 |
0 |
0.58 |
3.75 |
7.79 |
0.13 |
0.10 |
1.79 |
0.32 |
0.19 |
0.00 |
0.10 |
0.00 |
2.43 |
0.19 |
0.00 |
10.92 |
2.79 |
1.31 |
0.22 |
5.13 |
2.24 |
0.29 |
12.33 |
0.00 |
1.99 |
0.06 |
0.06 |
0.00 |
0.00 |
1.99 |
5.35 |
1.06 |
0.00 |
0.22 |
0.70 |
0.00 |
0.96 |
0.06 |
11.50 |
Jalisco |
1.67 |
0.62 |
8.31 |
2.39 |
0.01 |
0.01 |
0.00 |
0.01 |
0.00 |
0.00 |
0.95 |
2.44 |
0.20 |
0.06 |
0.55 |
0.00 |
0 |
1.33 |
3.76 |
13.16 |
1.86 |
0.29 |
5.85 |
0.58 |
0.16 |
0.28 |
0.45 |
0.04 |
7.83 |
0.11 |
0.48 |
19.69 |
8.33 |
1.32 |
0.52 |
7.47 |
1.81 |
0.00 |
11.55 |
0.00 |
0.00 |
1.02 |
0.15 |
0.00 |
0.02 |
0.92 |
9.78 |
0.41 |
0.02 |
0.13 |
1.78 |
0.02 |
0.54 |
0.00 |
10.79 |
México |
1.06 |
0.62 |
21.93 |
4.73 |
0.06 |
0.06 |
0.45 |
0.05 |
0.00 |
0.00 |
1.91 |
2.10 |
0.66 |
0.02 |
0.57 |
0.62 |
0 |
0.06 |
4.29 |
17.61 |
1.86 |
1.99 |
11.96 |
0.00 |
0.62 |
3.55 |
5.48 |
0.00 |
9.94 |
0.10 |
0.01 |
10.17 |
6.87 |
1.63 |
1.57 |
6.41 |
2.66 |
0.09 |
10.27 |
1.03 |
1.34 |
0.01 |
0.02 |
0.05 |
1.66 |
1.58 |
0.00 |
0.85 |
0.01 |
0.01 |
0.93 |
0.14 |
2.03 |
0.03 |
43.28 |
Michoacán de Ocampo |
3.89 |
1.61 |
10.91 |
1.98 |
0.04 |
0.04 |
0.41 |
0.06 |
0.00 |
0.00 |
0.49 |
0.99 |
0.08 |
0.08 |
0.89 |
0.16 |
0 |
0.25 |
2.24 |
9.61 |
0.02 |
1.89 |
0.76 |
0.10 |
0.06 |
0.10 |
0.04 |
0.02 |
1.17 |
0.25 |
0.04 |
5.33 |
4.18 |
1.05 |
0.14 |
5.58 |
1.71 |
0.47 |
1.98 |
0.00 |
0.41 |
0.00 |
0.00 |
0.00 |
0.02 |
4.06 |
7.53 |
0.47 |
0.00 |
0.08 |
1.09 |
0.25 |
0.60 |
0.02 |
4.76 |
Morelos |
4.36 |
0.87 |
2.13 |
10.41 |
0.00 |
0.00 |
2.32 |
0.10 |
0.00 |
0.00 |
0.73 |
2.23 |
0.29 |
0.44 |
1.50 |
0.00 |
0 |
0.34 |
6.05 |
14.58 |
5.23 |
0.58 |
2.47 |
0.19 |
0.10 |
0.48 |
0.15 |
0.15 |
10.99 |
0.48 |
0.00 |
17.38 |
8.04 |
3.15 |
0.68 |
8.09 |
5.62 |
2.95 |
22.18 |
0.00 |
1.02 |
1.45 |
0.10 |
0.05 |
0.10 |
3.39 |
17.34 |
1.60 |
0.05 |
0.73 |
0.87 |
0.00 |
0.19 |
0.05 |
5.96 |
Nayarit |
0.92 |
0.77 |
1.38 |
0.38 |
0.00 |
0.00 |
0.00 |
0.08 |
0.00 |
0.00 |
0.31 |
0.00 |
0.15 |
0.00 |
1.38 |
0.23 |
0 |
0.84 |
1.15 |
3.52 |
0.15 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.54 |
0.08 |
0.00 |
1.45 |
0.77 |
0.00 |
0.15 |
0.77 |
0.23 |
0.08 |
7.43 |
0.00 |
3.14 |
0.08 |
0.08 |
0.00 |
0.00 |
1.22 |
0.69 |
0.38 |
0.00 |
0.00 |
0.08 |
0.00 |
0.08 |
0.00 |
5.82 |
Nuevo León |
1.90 |
0.72 |
6.42 |
1.99 |
0.07 |
0.16 |
0.70 |
0.07 |
0.00 |
0.14 |
4.61 |
2.48 |
0.74 |
0.05 |
1.55 |
0.65 |
0 |
1.23 |
3.01 |
6.17 |
0.12 |
0.44 |
0.91 |
0.77 |
0.05 |
0.04 |
0.02 |
0.02 |
1.79 |
0.09 |
0.07 |
5.36 |
6.45 |
1.46 |
1.62 |
7.53 |
2.15 |
0.12 |
34.10 |
0.00 |
0.77 |
9.48 |
0.32 |
0.12 |
0.00 |
6.56 |
7.32 |
0.49 |
0.02 |
0.19 |
1.88 |
0.00 |
3.29 |
1.57 |
6.16 |
Oaxaca |
1.32 |
2.40 |
7.18 |
1.90 |
0.19 |
0.02 |
0.38 |
0.05 |
0.00 |
0.00 |
0.41 |
0.94 |
0.58 |
0.07 |
0.72 |
0.84 |
0 |
0.02 |
2.59 |
5.28 |
0.22 |
0.14 |
4.66 |
0.34 |
0.65 |
0.22 |
0.00 |
0.00 |
2.86 |
0.19 |
0.02 |
4.37 |
4.01 |
1.06 |
0.41 |
4.90 |
2.71 |
0.86 |
14.19 |
0.00 |
0.26 |
0.36 |
0.00 |
0.00 |
1.30 |
0.43 |
9.00 |
0.65 |
0.00 |
0.65 |
0.55 |
0.00 |
0.62 |
0.41 |
2.66 |
Puebla |
1.16 |
0.47 |
7.37 |
1.37 |
0.06 |
0.02 |
0.39 |
0.03 |
0.00 |
0.00 |
0.38 |
1.05 |
0.39 |
0.03 |
0.63 |
0.63 |
0 |
1.34 |
3.20 |
10.43 |
1.85 |
2.00 |
4.95 |
0.00 |
0.14 |
0.69 |
2.16 |
0.02 |
5.18 |
0.09 |
0.99 |
8.85 |
6.12 |
2.33 |
0.21 |
5.52 |
2.37 |
0.33 |
12.05 |
0.00 |
0.53 |
0.81 |
0.03 |
0.05 |
0.81 |
1.76 |
7.08 |
0.42 |
0.00 |
0.15 |
0.42 |
0.06 |
1.52 |
0.06 |
2.03 |
Querétaro |
0.56 |
1.03 |
16.90 |
3.97 |
0.04 |
0.17 |
5.56 |
0.00 |
0.00 |
0.00 |
0.73 |
3.49 |
3.02 |
0.00 |
1.64 |
0.82 |
0 |
0.13 |
7.80 |
13.93 |
1.60 |
0.00 |
5.00 |
0.17 |
0.43 |
1.34 |
1.42 |
0.00 |
7.85 |
0.95 |
0.13 |
39.92 |
12.46 |
2.50 |
1.42 |
5.60 |
3.23 |
0.26 |
15.26 |
0.43 |
2.24 |
1.25 |
0.00 |
0.00 |
1.42 |
4.18 |
15.00 |
1.12 |
0.00 |
0.39 |
0.34 |
0.00 |
0.00 |
0.09 |
15.87 |
Quintana Roo |
2.27 |
4.37 |
12.15 |
6.53 |
0.06 |
0.00 |
1.93 |
0.00 |
0.00 |
0.00 |
4.49 |
4.94 |
1.59 |
0.17 |
3.52 |
0.00 |
0 |
1.82 |
7.27 |
11.87 |
0.40 |
0.11 |
8.97 |
2.67 |
0.34 |
0.28 |
0.11 |
0.00 |
7.83 |
0.06 |
3.97 |
30.83 |
1.48 |
14.36 |
1.02 |
20.32 |
3.58 |
1.31 |
25.89 |
0.00 |
2.50 |
2.27 |
0.68 |
0.17 |
0.00 |
4.94 |
12.89 |
1.19 |
0.00 |
1.76 |
1.08 |
0.34 |
3.63 |
0.40 |
5.96 |
San Luis Potosí |
1.42 |
0.87 |
11.19 |
1.77 |
0.07 |
0.00 |
0.76 |
0.03 |
0.00 |
0.00 |
1.91 |
1.73 |
0.90 |
0.00 |
2.22 |
0.00 |
0 |
0.83 |
3.12 |
11.12 |
1.73 |
0.87 |
1.87 |
0.21 |
0.07 |
0.07 |
0.00 |
0.00 |
5.16 |
1.00 |
0.38 |
14.45 |
7.45 |
2.50 |
0.45 |
16.39 |
2.08 |
5.75 |
26.86 |
0.00 |
1.42 |
0.00 |
0.07 |
0.00 |
0.00 |
2.25 |
8.04 |
1.63 |
0.00 |
0.00 |
0.45 |
0.35 |
1.49 |
0.00 |
5.72 |
Sinaloa |
1.48 |
2.01 |
7.04 |
1.54 |
0.06 |
0.03 |
2.48 |
0.00 |
0.00 |
0.00 |
3.77 |
0.88 |
0.16 |
0.09 |
0.69 |
0.19 |
0 |
0.13 |
0.79 |
9.71 |
0.03 |
0.00 |
0.03 |
0.00 |
0.00 |
0.03 |
0.09 |
0.00 |
2.01 |
0.03 |
0.00 |
4.37 |
1.54 |
0.50 |
0.09 |
4.93 |
1.07 |
0.03 |
11.91 |
0.00 |
0.28 |
0.28 |
0.22 |
0.00 |
0.44 |
0.19 |
2.80 |
0.03 |
0.00 |
0.16 |
0.22 |
0.00 |
0.38 |
0.00 |
0.85 |
Sonora |
5.08 |
0.90 |
4.95 |
2.44 |
0.16 |
0.03 |
0.77 |
0.03 |
0.00 |
0.00 |
1.48 |
1.74 |
0.00 |
0.00 |
0.45 |
0.22 |
0 |
0.16 |
2.38 |
4.82 |
0.19 |
0.03 |
0.77 |
0.71 |
0.00 |
0.00 |
0.03 |
0.03 |
1.74 |
0.16 |
0.00 |
10.12 |
1.74 |
0.48 |
0.10 |
6.17 |
0.58 |
0.55 |
14.46 |
0.00 |
4.37 |
0.29 |
0.13 |
0.00 |
0.22 |
8.20 |
3.18 |
1.25 |
0.00 |
0.10 |
0.13 |
0.03 |
0.10 |
0.00 |
3.50 |
Tabasco |
1.08 |
1.15 |
14.27 |
4.23 |
0.04 |
0.04 |
1.96 |
0.04 |
0.00 |
0.00 |
2.12 |
0.88 |
0.00 |
0.73 |
1.12 |
0.00 |
0 |
1.81 |
5.23 |
10.92 |
0.15 |
0.00 |
6.04 |
0.00 |
0.04 |
0.00 |
0.04 |
0.00 |
2.65 |
2.35 |
0.00 |
16.19 |
4.35 |
2.46 |
0.31 |
7.46 |
2.00 |
0.46 |
25.31 |
0.00 |
3.27 |
0.04 |
0.15 |
0.00 |
0.00 |
0.12 |
16.62 |
1.35 |
0.00 |
0.27 |
0.50 |
0.00 |
0.85 |
0.08 |
22.23 |
Tamaulipas |
0.95 |
1.49 |
4.73 |
2.28 |
0.00 |
0.03 |
0.63 |
0.11 |
0.05 |
0.00 |
0.92 |
1.90 |
0.35 |
0.03 |
1.41 |
0.00 |
0 |
0.14 |
3.53 |
5.54 |
0.00 |
0.00 |
0.27 |
0.00 |
0.00 |
0.00 |
0.00 |
0.03 |
2.61 |
0.16 |
0.00 |
7.04 |
3.23 |
1.22 |
0.16 |
6.93 |
0.84 |
0.05 |
20.95 |
0.00 |
4.46 |
1.58 |
0.05 |
0.00 |
0.00 |
0.19 |
3.21 |
0.63 |
0.05 |
0.43 |
0.30 |
0.00 |
0.84 |
0.27 |
3.91 |
Tlaxcala |
0.64 |
0.43 |
0.86 |
0.50 |
0.00 |
0.00 |
0.14 |
0.07 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.29 |
0.00 |
0 |
0.07 |
2.44 |
12.61 |
0.07 |
0.57 |
0.72 |
0.14 |
0.07 |
0.00 |
0.29 |
0.00 |
2.44 |
0.29 |
0.50 |
2.01 |
0.00 |
0.00 |
0.00 |
0.57 |
0.21 |
0.07 |
0.07 |
0.00 |
0.79 |
0.00 |
0.00 |
0.00 |
0.00 |
1.22 |
0.00 |
0.43 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
1.36 |
Veracruz de Ignacio de la Llave |
0.95 |
0.86 |
6.32 |
1.55 |
0.03 |
0.03 |
0.10 |
0.06 |
0.00 |
0.00 |
0.50 |
0.91 |
0.00 |
0.52 |
0.43 |
0.02 |
0 |
1.32 |
2.55 |
5.60 |
0.17 |
0.19 |
2.69 |
0.31 |
0.08 |
0.06 |
0.17 |
0.03 |
6.11 |
0.44 |
0.15 |
3.31 |
3.53 |
1.35 |
0.56 |
6.26 |
2.14 |
0.72 |
10.92 |
1.30 |
1.25 |
1.62 |
0.05 |
0.03 |
0.00 |
1.18 |
6.31 |
0.55 |
0.00 |
0.26 |
0.43 |
0.22 |
0.51 |
0.35 |
5.82 |
Yucatán |
0.31 |
0.70 |
0.57 |
0.09 |
0.04 |
0.00 |
0.39 |
0.00 |
0.00 |
0.00 |
0.00 |
0.39 |
0.00 |
0.00 |
0.09 |
0.00 |
0 |
0.00 |
0.39 |
0.13 |
0.04 |
0.00 |
0.39 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.57 |
0.00 |
0.00 |
0.00 |
0.39 |
0.44 |
0.00 |
2.19 |
0.04 |
1.80 |
4.60 |
0.00 |
0.18 |
0.04 |
0.00 |
0.09 |
0.04 |
1.44 |
3.59 |
0.13 |
0.00 |
0.00 |
0.00 |
0.00 |
0.09 |
0.04 |
4.29 |
Zacatecas |
5.07 |
2.03 |
7.15 |
2.38 |
0.00 |
0.00 |
2.74 |
0.12 |
0.00 |
0.00 |
2.44 |
1.49 |
0.77 |
0.06 |
0.60 |
0.60 |
0 |
0.60 |
2.03 |
5.96 |
0.12 |
0.12 |
0.12 |
0.00 |
0.00 |
0.00 |
0.06 |
0.06 |
0.60 |
0.42 |
0.00 |
18.06 |
4.89 |
2.15 |
2.32 |
10.55 |
1.73 |
0.95 |
16.39 |
0.00 |
2.68 |
0.72 |
0.06 |
0.00 |
0.00 |
1.85 |
5.78 |
0.83 |
0.06 |
0.77 |
0.12 |
0.00 |
1.97 |
0.72 |
7.09 |
Absolutos en el mes
kable(delitoEstado2020mes)
Aguascalientes |
6 |
9 |
282 |
83 |
1 |
4 |
4 |
0 |
0 |
0 |
30 |
0 |
0 |
12 |
28 |
4 |
0 |
31 |
200 |
127 |
89 |
0 |
113 |
0 |
9 |
0 |
4 |
0 |
171 |
10 |
1 |
159 |
189 |
71 |
4 |
339 |
34 |
24 |
216 |
1 |
33 |
2 |
2 |
0 |
0 |
39 |
276 |
42 |
0 |
7 |
62 |
6 |
23 |
2 |
182 |
Baja California |
245 |
48 |
536 |
149 |
3 |
5 |
245 |
4 |
2 |
0 |
65 |
144 |
0 |
23 |
49 |
39 |
0 |
44 |
238 |
979 |
5 |
4 |
375 |
1 |
1 |
1 |
5 |
1 |
447 |
1 |
0 |
622 |
232 |
50 |
14 |
714 |
141 |
75 |
1259 |
0 |
87 |
46 |
88 |
7 |
2 |
531 |
415 |
186 |
0 |
16 |
44 |
2 |
85 |
0 |
582 |
Baja California Sur |
3 |
3 |
126 |
43 |
0 |
0 |
2 |
0 |
1 |
0 |
15 |
19 |
6 |
3 |
18 |
2 |
0 |
8 |
80 |
33 |
1 |
0 |
9 |
7 |
0 |
0 |
0 |
0 |
44 |
5 |
0 |
194 |
92 |
26 |
10 |
99 |
26 |
4 |
198 |
1 |
50 |
26 |
3 |
1 |
1 |
40 |
124 |
15 |
0 |
12 |
9 |
0 |
12 |
0 |
58 |
Campeche |
7 |
7 |
8 |
7 |
1 |
0 |
2 |
0 |
0 |
0 |
1 |
5 |
0 |
0 |
5 |
7 |
0 |
2 |
14 |
27 |
2 |
0 |
5 |
0 |
0 |
0 |
0 |
0 |
17 |
2 |
0 |
19 |
1 |
0 |
0 |
13 |
1 |
4 |
1 |
0 |
1 |
0 |
0 |
2 |
0 |
13 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
Coahuila de Zaragoza |
14 |
20 |
381 |
74 |
1 |
2 |
4 |
1 |
0 |
0 |
3 |
73 |
30 |
3 |
25 |
24 |
0 |
4 |
228 |
43 |
18 |
0 |
17 |
8 |
2 |
1 |
3 |
0 |
67 |
10 |
8 |
370 |
146 |
61 |
2 |
658 |
41 |
138 |
1205 |
3 |
25 |
23 |
6 |
0 |
0 |
956 |
534 |
64 |
0 |
3 |
13 |
1 |
49 |
6 |
188 |
Colima |
40 |
18 |
98 |
55 |
0 |
0 |
0 |
0 |
0 |
0 |
28 |
25 |
0 |
6 |
22 |
0 |
0 |
2 |
173 |
90 |
0 |
0 |
4 |
11 |
0 |
0 |
0 |
0 |
69 |
2 |
0 |
299 |
107 |
43 |
3 |
237 |
40 |
29 |
386 |
0 |
62 |
0 |
1 |
0 |
9 |
130 |
237 |
22 |
0 |
2 |
13 |
6 |
11 |
0 |
73 |
Chiapas |
38 |
56 |
41 |
48 |
3 |
1 |
11 |
2 |
0 |
0 |
13 |
21 |
5 |
1 |
42 |
1 |
0 |
62 |
13 |
133 |
0 |
0 |
6 |
4 |
0 |
3 |
0 |
0 |
20 |
0 |
0 |
65 |
16 |
2 |
4 |
66 |
19 |
8 |
361 |
0 |
24 |
0 |
7 |
0 |
8 |
128 |
54 |
14 |
0 |
1 |
11 |
10 |
12 |
0 |
108 |
Chihuahua |
197 |
29 |
404 |
110 |
2 |
0 |
40 |
2 |
0 |
0 |
41 |
157 |
0 |
11 |
110 |
22 |
0 |
33 |
220 |
372 |
55 |
2 |
30 |
11 |
2 |
0 |
3 |
1 |
139 |
8 |
13 |
421 |
341 |
91 |
0 |
745 |
76 |
51 |
1109 |
2 |
142 |
4 |
3 |
1 |
0 |
323 |
302 |
70 |
0 |
16 |
121 |
10 |
125 |
6 |
158 |
Ciudad de México |
84 |
46 |
378 |
348 |
3 |
8 |
17 |
2 |
0 |
1 |
182 |
318 |
122 |
0 |
116 |
66 |
0 |
138 |
328 |
571 |
653 |
5 |
995 |
321 |
42 |
352 |
169 |
4 |
1088 |
0 |
2 |
2261 |
1797 |
434 |
39 |
857 |
393 |
363 |
2817 |
0 |
95 |
1 |
25 |
10 |
223 |
533 |
1389 |
86 |
0 |
46 |
244 |
80 |
475 |
31 |
620 |
Durango |
6 |
25 |
208 |
104 |
1 |
0 |
2 |
0 |
0 |
0 |
12 |
45 |
8 |
1 |
24 |
0 |
0 |
19 |
206 |
82 |
17 |
0 |
48 |
2 |
5 |
0 |
0 |
1 |
79 |
2 |
1 |
307 |
120 |
54 |
9 |
212 |
33 |
2 |
485 |
0 |
15 |
59 |
0 |
0 |
0 |
82 |
110 |
15 |
0 |
3 |
13 |
0 |
7 |
0 |
65 |
Guanajuato |
242 |
83 |
936 |
3 |
2 |
4 |
58 |
2 |
0 |
0 |
0 |
115 |
20 |
6 |
65 |
9 |
0 |
1 |
361 |
334 |
0 |
0 |
18 |
0 |
0 |
0 |
0 |
0 |
328 |
13 |
0 |
1519 |
331 |
138 |
23 |
872 |
121 |
20 |
1011 |
0 |
195 |
3 |
31 |
0 |
0 |
1441 |
814 |
35 |
0 |
19 |
37 |
1 |
18 |
0 |
1466 |
Guerrero |
94 |
39 |
197 |
45 |
0 |
0 |
1 |
0 |
0 |
0 |
37 |
29 |
15 |
1 |
16 |
14 |
0 |
0 |
19 |
152 |
2 |
0 |
6 |
0 |
0 |
4 |
0 |
0 |
91 |
2 |
2 |
198 |
74 |
35 |
16 |
162 |
46 |
0 |
266 |
32 |
48 |
7 |
1 |
0 |
0 |
93 |
200 |
21 |
0 |
5 |
22 |
0 |
12 |
0 |
77 |
Hidalgo |
15 |
24 |
230 |
150 |
0 |
1 |
8 |
2 |
0 |
0 |
130 |
52 |
0 |
4 |
30 |
26 |
0 |
18 |
117 |
243 |
4 |
3 |
56 |
10 |
6 |
0 |
3 |
0 |
76 |
6 |
0 |
341 |
87 |
41 |
7 |
160 |
70 |
9 |
385 |
0 |
62 |
2 |
2 |
0 |
0 |
62 |
167 |
33 |
0 |
7 |
22 |
0 |
30 |
2 |
359 |
Jalisco |
142 |
53 |
706 |
203 |
1 |
1 |
0 |
1 |
0 |
0 |
81 |
207 |
17 |
5 |
47 |
0 |
0 |
113 |
319 |
1117 |
158 |
25 |
497 |
49 |
14 |
24 |
38 |
3 |
665 |
9 |
41 |
1672 |
707 |
112 |
44 |
634 |
154 |
0 |
981 |
0 |
0 |
87 |
13 |
0 |
2 |
78 |
830 |
35 |
2 |
11 |
151 |
2 |
46 |
0 |
916 |
México |
186 |
109 |
3861 |
832 |
11 |
10 |
79 |
9 |
0 |
0 |
336 |
369 |
116 |
3 |
100 |
110 |
0 |
11 |
756 |
3100 |
327 |
350 |
2105 |
0 |
109 |
625 |
964 |
0 |
1749 |
17 |
1 |
1791 |
1210 |
287 |
277 |
1128 |
469 |
16 |
1807 |
182 |
236 |
1 |
3 |
9 |
292 |
278 |
0 |
149 |
2 |
1 |
163 |
25 |
358 |
6 |
7619 |
Michoacán de Ocampo |
189 |
78 |
530 |
96 |
2 |
2 |
20 |
3 |
0 |
0 |
24 |
48 |
4 |
4 |
43 |
8 |
0 |
12 |
109 |
467 |
1 |
92 |
37 |
5 |
3 |
5 |
2 |
1 |
57 |
12 |
2 |
259 |
203 |
51 |
7 |
271 |
83 |
23 |
96 |
0 |
20 |
0 |
0 |
0 |
1 |
197 |
366 |
23 |
0 |
4 |
53 |
12 |
29 |
1 |
231 |
Morelos |
90 |
18 |
44 |
215 |
0 |
0 |
48 |
2 |
0 |
0 |
15 |
46 |
6 |
9 |
31 |
0 |
0 |
7 |
125 |
301 |
108 |
12 |
51 |
4 |
2 |
10 |
3 |
3 |
227 |
10 |
0 |
359 |
166 |
65 |
14 |
167 |
116 |
61 |
458 |
0 |
21 |
30 |
2 |
1 |
2 |
70 |
358 |
33 |
1 |
15 |
18 |
0 |
4 |
1 |
123 |
Nayarit |
12 |
10 |
18 |
5 |
0 |
0 |
0 |
1 |
0 |
0 |
4 |
0 |
2 |
0 |
18 |
3 |
0 |
11 |
15 |
46 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
7 |
1 |
0 |
19 |
10 |
0 |
2 |
10 |
3 |
1 |
97 |
0 |
41 |
1 |
1 |
0 |
0 |
16 |
9 |
5 |
0 |
0 |
1 |
0 |
1 |
0 |
76 |
Nuevo León |
108 |
41 |
365 |
113 |
4 |
9 |
40 |
4 |
0 |
8 |
262 |
141 |
42 |
3 |
88 |
37 |
0 |
70 |
171 |
351 |
7 |
25 |
52 |
44 |
3 |
2 |
1 |
1 |
102 |
5 |
4 |
305 |
367 |
83 |
92 |
428 |
122 |
7 |
1939 |
0 |
44 |
539 |
18 |
7 |
0 |
373 |
416 |
28 |
1 |
11 |
107 |
0 |
187 |
89 |
350 |
Oaxaca |
55 |
100 |
299 |
79 |
8 |
1 |
16 |
2 |
0 |
0 |
17 |
39 |
24 |
3 |
30 |
35 |
0 |
1 |
108 |
220 |
9 |
6 |
194 |
14 |
27 |
9 |
0 |
0 |
119 |
8 |
1 |
182 |
167 |
44 |
17 |
204 |
113 |
36 |
591 |
0 |
11 |
15 |
0 |
0 |
54 |
18 |
375 |
27 |
0 |
27 |
23 |
0 |
26 |
17 |
111 |
Puebla |
77 |
31 |
491 |
91 |
4 |
1 |
26 |
2 |
0 |
0 |
25 |
70 |
26 |
2 |
42 |
42 |
0 |
89 |
213 |
695 |
123 |
133 |
330 |
0 |
9 |
46 |
144 |
1 |
345 |
6 |
66 |
590 |
408 |
155 |
14 |
368 |
158 |
22 |
803 |
0 |
35 |
54 |
2 |
3 |
54 |
117 |
472 |
28 |
0 |
10 |
28 |
4 |
101 |
4 |
135 |
Querétaro |
13 |
24 |
392 |
92 |
1 |
4 |
129 |
0 |
0 |
0 |
17 |
81 |
70 |
0 |
38 |
19 |
0 |
3 |
181 |
323 |
37 |
0 |
116 |
4 |
10 |
31 |
33 |
0 |
182 |
22 |
3 |
926 |
289 |
58 |
33 |
130 |
75 |
6 |
354 |
10 |
52 |
29 |
0 |
0 |
33 |
97 |
348 |
26 |
0 |
9 |
8 |
0 |
0 |
2 |
368 |
Quintana Roo |
40 |
77 |
214 |
115 |
1 |
0 |
34 |
0 |
0 |
0 |
79 |
87 |
28 |
3 |
62 |
0 |
0 |
32 |
128 |
209 |
7 |
2 |
158 |
47 |
6 |
5 |
2 |
0 |
138 |
1 |
70 |
543 |
26 |
253 |
18 |
358 |
63 |
23 |
456 |
0 |
44 |
40 |
12 |
3 |
0 |
87 |
227 |
21 |
0 |
31 |
19 |
6 |
64 |
7 |
105 |
San Luis Potosí |
41 |
25 |
323 |
51 |
2 |
0 |
22 |
1 |
0 |
0 |
55 |
50 |
26 |
0 |
64 |
0 |
0 |
24 |
90 |
321 |
50 |
25 |
54 |
6 |
2 |
2 |
0 |
0 |
149 |
29 |
11 |
417 |
215 |
72 |
13 |
473 |
60 |
166 |
775 |
0 |
41 |
0 |
2 |
0 |
0 |
65 |
232 |
47 |
0 |
0 |
13 |
10 |
43 |
0 |
165 |
Sinaloa |
47 |
64 |
224 |
49 |
2 |
1 |
79 |
0 |
0 |
0 |
120 |
28 |
5 |
3 |
22 |
6 |
0 |
4 |
25 |
309 |
1 |
0 |
1 |
0 |
0 |
1 |
3 |
0 |
64 |
1 |
0 |
139 |
49 |
16 |
3 |
157 |
34 |
1 |
379 |
0 |
9 |
9 |
7 |
0 |
14 |
6 |
89 |
1 |
0 |
5 |
7 |
0 |
12 |
0 |
27 |
Sonora |
158 |
28 |
154 |
76 |
5 |
1 |
24 |
1 |
0 |
0 |
46 |
54 |
0 |
0 |
14 |
7 |
0 |
5 |
74 |
150 |
6 |
1 |
24 |
22 |
0 |
0 |
1 |
1 |
54 |
5 |
0 |
315 |
54 |
15 |
3 |
192 |
18 |
17 |
450 |
0 |
136 |
9 |
4 |
0 |
7 |
255 |
99 |
39 |
0 |
3 |
4 |
1 |
3 |
0 |
109 |
Tabasco |
28 |
30 |
371 |
110 |
1 |
1 |
51 |
1 |
0 |
0 |
55 |
23 |
0 |
19 |
29 |
0 |
0 |
47 |
136 |
284 |
4 |
0 |
157 |
0 |
1 |
0 |
1 |
0 |
69 |
61 |
0 |
421 |
113 |
64 |
8 |
194 |
52 |
12 |
658 |
0 |
85 |
1 |
4 |
0 |
0 |
3 |
432 |
35 |
0 |
7 |
13 |
0 |
22 |
2 |
578 |
Tamaulipas |
35 |
55 |
174 |
84 |
0 |
1 |
23 |
4 |
2 |
0 |
34 |
70 |
13 |
1 |
52 |
0 |
0 |
5 |
130 |
204 |
0 |
0 |
10 |
0 |
0 |
0 |
0 |
1 |
96 |
6 |
0 |
259 |
119 |
45 |
6 |
255 |
31 |
2 |
771 |
0 |
164 |
58 |
2 |
0 |
0 |
7 |
118 |
23 |
2 |
16 |
11 |
0 |
31 |
10 |
144 |
Tlaxcala |
9 |
6 |
12 |
7 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
0 |
0 |
1 |
34 |
176 |
1 |
8 |
10 |
2 |
1 |
0 |
4 |
0 |
34 |
4 |
7 |
28 |
0 |
0 |
0 |
8 |
3 |
1 |
1 |
0 |
11 |
0 |
0 |
0 |
0 |
17 |
0 |
6 |
0 |
0 |
0 |
0 |
0 |
0 |
19 |
Veracruz de Ignacio de la Llave |
82 |
74 |
543 |
133 |
3 |
3 |
9 |
5 |
0 |
0 |
43 |
78 |
0 |
45 |
37 |
2 |
0 |
113 |
219 |
481 |
15 |
16 |
231 |
27 |
7 |
5 |
15 |
3 |
525 |
38 |
13 |
284 |
303 |
116 |
48 |
538 |
184 |
62 |
938 |
112 |
107 |
139 |
4 |
3 |
0 |
101 |
542 |
47 |
0 |
22 |
37 |
19 |
44 |
30 |
500 |
Yucatán |
7 |
16 |
13 |
2 |
1 |
0 |
9 |
0 |
0 |
0 |
0 |
9 |
0 |
0 |
2 |
0 |
0 |
0 |
9 |
3 |
1 |
0 |
9 |
0 |
0 |
0 |
0 |
0 |
13 |
0 |
0 |
0 |
9 |
10 |
0 |
50 |
1 |
41 |
105 |
0 |
4 |
1 |
0 |
2 |
1 |
33 |
82 |
3 |
0 |
0 |
0 |
0 |
2 |
1 |
98 |
Zacatecas |
85 |
34 |
120 |
40 |
0 |
0 |
46 |
2 |
0 |
0 |
41 |
25 |
13 |
1 |
10 |
10 |
0 |
10 |
34 |
100 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
10 |
7 |
0 |
303 |
82 |
36 |
39 |
177 |
29 |
16 |
275 |
0 |
45 |
12 |
1 |
0 |
0 |
31 |
97 |
14 |
1 |
13 |
2 |
0 |
33 |
12 |
119 |
Lugar a nivel nacional de los municipios Queretanos en incidencia delictiva
Top 50 municipios en el año
pop2020<-subset(pop,pop$ANO==losAnos[length(losAnos)])
delitos2020<-subset(delitos2,delitos2$Ano==losAnos[length(losAnos)])
popMun<-aggregate(pop2020$POB~pop2020$MUN,pop2020,sum)
delMun<-aggregate(delitos2020$value~delitos2020$Cve..Municipio,delitos2020,sum)
delMun$estado<-NA
delMun$municipio<-NA
for (i in 1:nrow(delMun)) {
delMun$estado[i]<-unique(delitos2020$Entidad[delitos2020$Cve..Municipio==delMun$`delitos2020$Cve..Municipio`[i]])
delMun$municipio[i]<-unique(delitos2020$Municipio[delitos2020$Cve..Municipio==delMun$`delitos2020$Cve..Municipio`[i]])
}
delMun$poblacion<-NA
for (i in 1:nrow(delMun)) {
delMun$poblacion[delMun$municipio==popMun$`pop2020$MUN`[i]]<-popMun$`pop2020$POB`[i]
}
delMun$incidencia<-NA
delMun$incidencia<-round(delMun$`delitos2020$value`/delMun$poblacion*100000,2)
delMun<-delMun[order(delMun$incidencia,decreasing = TRUE),]
delMun$posicion<-NA
for (i in 1:nrow(delMun)) {
delMun$posicion[i]<-i
}
names(delMun)[c(1,2,6,7)]<-c("Clave del municipio","Número de carpetas de investigación", "Incidencia por cada 100 mil habitantes","Posición a nivel nacional")
kable(head(delMun[,c(7,3,4,2,5,6)],50),caption = "Top 50 en el año")
Top 50 en el año
1828 |
1 |
Quintana Roo |
Tulum |
1294 |
37689 |
3433.36 |
75 |
2 |
Colima |
Colima |
5698 |
171674 |
3319.08 |
738 |
3 |
México |
Polotitlán |
374 |
15243 |
2453.59 |
288 |
4 |
Ciudad de México |
Cuauhtémoc |
18713 |
780197 |
2398.50 |
231 |
5 |
Chihuahua |
Santa Isabel |
97 |
4338 |
2236.05 |
912 |
6 |
Morelos |
Cuernavaca |
8452 |
402642 |
2099.14 |
777 |
7 |
México |
Valle de Bravo |
1475 |
70753 |
2084.72 |
289 |
8 |
Ciudad de México |
Miguel Hidalgo |
7895 |
380465 |
2075.09 |
8 |
9 |
Aguascalientes |
San José de Gracia |
201 |
9771 |
2057.11 |
80 |
10 |
Colima |
Manzanillo |
4253 |
206757 |
2057.00 |
1079 |
11 |
Oaxaca |
Oaxaca de Juárez |
5240 |
258773 |
2024.94 |
505 |
12 |
Hidalgo |
Pachuca de Soto |
5612 |
281814 |
1991.38 |
16 |
13 |
Baja California |
Playas de Rosarito |
2182 |
109679 |
1989.44 |
773 |
14 |
México |
Toluca |
19034 |
959238 |
1984.28 |
1814 |
15 |
Querétaro |
Querétaro |
19116 |
992423 |
1926.19 |
14 |
16 |
Baja California |
Tecate |
2082 |
115534 |
1802.07 |
692 |
17 |
México |
Chalco |
7292 |
405488 |
1798.33 |
1827 |
18 |
Quintana Roo |
Solidaridad |
4394 |
245816 |
1787.52 |
2476 |
19 |
Zacatecas |
Zacatecas |
2749 |
156434 |
1757.29 |
971 |
20 |
Nuevo León |
El Carmen |
853 |
48695 |
1751.72 |
676 |
21 |
México |
Amecameca |
962 |
54970 |
1750.05 |
766 |
22 |
México |
Texcoco |
4583 |
264421 |
1733.22 |
1858 |
23 |
San Luis Potosí |
San Luis Potosí |
15108 |
875955 |
1724.75 |
911 |
24 |
Morelos |
Cuautla |
3654 |
212954 |
1715.86 |
788 |
25 |
México |
Cuautitlán Izcalli |
9810 |
581688 |
1686.47 |
988 |
26 |
Nuevo León |
Los Herreras |
34 |
2019 |
1684.00 |
689 |
27 |
México |
Cocotitlán |
262 |
15587 |
1680.89 |
76 |
28 |
Colima |
Comala |
401 |
24207 |
1656.55 |
726 |
29 |
México |
Nextlalpan |
736 |
44432 |
1656.46 |
13 |
30 |
Baja California |
Mexicali |
18308 |
1105279 |
1656.41 |
787 |
31 |
México |
Zumpango |
3633 |
220996 |
1643.92 |
239 |
32 |
Chihuahua |
Hidalgo del Parral |
1936 |
118713 |
1630.82 |
37 |
33 |
Coahuila de Zaragoza |
Acuña |
2675 |
164667 |
1624.49 |
350 |
34 |
Guanajuato |
León |
27528 |
1694594 |
1624.46 |
11 |
35 |
Aguascalientes |
San Francisco de los Romo |
853 |
52584 |
1622.17 |
914 |
36 |
Morelos |
Huitzilac |
334 |
20598 |
1621.52 |
683 |
37 |
México |
Axapusco |
493 |
30436 |
1619.79 |
917 |
38 |
Morelos |
Jojutla |
996 |
61927 |
1608.35 |
691 |
39 |
México |
Cuautitlán |
2851 |
177731 |
1604.11 |
750 |
40 |
México |
Temamatla |
222 |
13843 |
1603.70 |
677 |
41 |
México |
Apaxco |
509 |
31891 |
1596.06 |
337 |
42 |
Guanajuato |
Celaya |
8459 |
535265 |
1580.34 |
721 |
43 |
México |
Metepec |
4108 |
260825 |
1575.00 |
743 |
44 |
México |
San Mateo Atenco |
1282 |
81552 |
1572.00 |
977 |
45 |
Nuevo León |
Doctor González |
52 |
3314 |
1569.10 |
275 |
46 |
Ciudad de México |
Azcapotzalco |
6373 |
407280 |
1564.77 |
1984 |
47 |
Tabasco |
Centro |
11689 |
747937 |
1562.83 |
792 |
48 |
México |
Tonanitla |
172 |
11014 |
1561.65 |
1563 |
49 |
Oaxaca |
Tlacolula de Matamoros |
380 |
24343 |
1561.02 |
345 |
50 |
Guanajuato |
Guanajuato |
3117 |
199866 |
1559.54 |
Top 50 municipios en el mes
pop2020<-subset(pop,pop$ANO==losAnos[length(losAnos)])
delitos2020Mes<-subset(delitos2,delitos2$Ano==losAnos[length(losAnos)] & delitos2$meses== esteMes)
popMun<-aggregate(pop2020$POB~pop2020$MUN,pop2020,sum)
delMunMes<-aggregate(delitos2020Mes$value~delitos2020Mes$Cve..Municipio,delitos2020Mes,sum)
delMunMes$estado<-NA
delMunMes$municipio<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$estado[i]<-unique(delitos2020Mes$Entidad[delitos2020Mes$Cve..Municipio==delMunMes$`delitos2020Mes$Cve..Municipio`[i]])
delMunMes$municipio[i]<-unique(delitos2020Mes$Municipio[delitos2020Mes$Cve..Municipio==delMunMes$`delitos2020Mes$Cve..Municipio`[i]])
}
delMunMes$poblacion<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$poblacion[delMunMes$municipio==popMun$`pop2020$MUN`[i]]<-popMun$`pop2020$POB`[i]
}
delMunMes$incidencia<-NA
delMunMes$incidencia<-round(delMunMes$`delitos2020Mes$value`/delMunMes$poblacion*100000,2)
delMunMes<-delMunMes[order(delMunMes$incidencia,decreasing = TRUE),]
delMunMes$posicion<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$posicion[i]<-i
}
names(delMunMes)[c(1,2,6,7)]<-c("Clave del municipio","Número de carpetas de investigación", "Incidencia por cada 100 mil habitantes","Posición a nivel nacional")
kable(head(delMunMes[,c(7,3,4,2,5,6)],50),caption = "Top 50 en el mes")
Top 50 en el mes
1828 |
1 |
Quintana Roo |
Tulum |
196 |
37689 |
520.05 |
75 |
2 |
Colima |
Colima |
829 |
171674 |
482.89 |
738 |
3 |
México |
Polotitlán |
67 |
15243 |
439.55 |
231 |
4 |
Chihuahua |
Santa Isabel |
19 |
4338 |
437.99 |
40 |
5 |
Coahuila de Zaragoza |
Candela |
8 |
1971 |
405.89 |
1361 |
6 |
Oaxaca |
San Sebastián Teitipac |
8 |
2040 |
392.16 |
288 |
7 |
Ciudad de México |
Cuauhtémoc |
3030 |
780197 |
388.36 |
1431 |
8 |
Oaxaca |
Santa María Jaltianguis |
2 |
539 |
371.06 |
1473 |
9 |
Oaxaca |
Santiago del Río |
2 |
567 |
352.73 |
1454 |
10 |
Oaxaca |
Santa María Yalina |
1 |
286 |
349.65 |
1090 |
11 |
Oaxaca |
Rojas de Cuauhtémoc |
4 |
1165 |
343.35 |
80 |
12 |
Colima |
Manzanillo |
702 |
206757 |
339.53 |
16 |
13 |
Baja California |
Playas de Rosarito |
358 |
109679 |
326.41 |
773 |
14 |
México |
Toluca |
3080 |
959238 |
321.09 |
1230 |
15 |
Oaxaca |
San Juan Teita |
2 |
639 |
312.99 |
912 |
16 |
Morelos |
Cuernavaca |
1259 |
402642 |
312.68 |
289 |
17 |
Ciudad de México |
Miguel Hidalgo |
1168 |
380465 |
306.99 |
8 |
18 |
Aguascalientes |
San José de Gracia |
29 |
9771 |
296.80 |
1079 |
19 |
Oaxaca |
Oaxaca de Juárez |
768 |
258773 |
296.79 |
777 |
20 |
México |
Valle de Bravo |
205 |
70753 |
289.74 |
1814 |
21 |
Querétaro |
Querétaro |
2869 |
992423 |
289.09 |
37 |
22 |
Coahuila de Zaragoza |
Acuña |
465 |
164667 |
282.39 |
1026 |
23 |
Oaxaca |
Ciudad Ixtepec |
86 |
30640 |
280.68 |
14 |
24 |
Baja California |
Tecate |
322 |
115534 |
278.71 |
1010 |
25 |
Nuevo León |
Santiago |
132 |
47500 |
277.89 |
914 |
26 |
Morelos |
Huitzilac |
57 |
20598 |
276.73 |
1207 |
27 |
Oaxaca |
San Juan Diuxi |
3 |
1110 |
270.27 |
531 |
28 |
Hidalgo |
Tlaxcoapan |
83 |
31018 |
267.59 |
63 |
29 |
Coahuila de Zaragoza |
Sabinas |
187 |
70427 |
265.52 |
1827 |
30 |
Quintana Roo |
Solidaridad |
650 |
245816 |
264.43 |
1141 |
31 |
Oaxaca |
San Cristóbal Suchixtlahuaca |
1 |
379 |
263.85 |
692 |
32 |
México |
Chalco |
1064 |
405488 |
262.40 |
750 |
33 |
México |
Temamatla |
36 |
13843 |
260.06 |
971 |
34 |
Nuevo León |
El Carmen |
126 |
48695 |
258.75 |
345 |
35 |
Guanajuato |
Guanajuato |
516 |
199866 |
258.17 |
676 |
36 |
México |
Amecameca |
141 |
54970 |
256.50 |
13 |
37 |
Baja California |
Mexicali |
2803 |
1105279 |
253.60 |
1858 |
38 |
San Luis Potosí |
San Luis Potosí |
2214 |
875955 |
252.75 |
766 |
39 |
México |
Texcoco |
668 |
264421 |
252.63 |
60 |
40 |
Coahuila de Zaragoza |
Piedras Negras |
450 |
179190 |
251.13 |
11 |
41 |
Aguascalientes |
San Francisco de los Romo |
132 |
52584 |
251.03 |
1829 |
42 |
Quintana Roo |
Bacalar |
116 |
46235 |
250.89 |
736 |
43 |
México |
Papalotla |
11 |
4397 |
250.17 |
2476 |
44 |
Zacatecas |
Zacatecas |
389 |
156434 |
248.67 |
788 |
45 |
México |
Cuautitlán Izcalli |
1423 |
581688 |
244.63 |
683 |
46 |
México |
Axapusco |
74 |
30436 |
243.13 |
973 |
47 |
Nuevo León |
Ciénega de Flores |
125 |
51865 |
241.01 |
76 |
48 |
Colima |
Comala |
58 |
24207 |
239.60 |
787 |
49 |
México |
Zumpango |
523 |
220996 |
236.66 |
724 |
50 |
México |
Naucalpan de Juárez |
2157 |
917312 |
235.14 |
Posición de los municipios de Queretaro en el año
kable(delMun[delMun$estado=="Querétaro",c(7,3,4,2,5,6)])
1814 |
15 |
Querétaro |
Querétaro |
19116 |
992423 |
1926.19 |
1816 |
114 |
Querétaro |
San Juan del Río |
3949 |
321648 |
1227.74 |
1811 |
140 |
Querétaro |
El Marqués |
2114 |
183234 |
1153.72 |
1809 |
196 |
Querétaro |
Jalpan de Serra |
317 |
30075 |
1054.03 |
1806 |
291 |
Querétaro |
Corregidora |
1924 |
213526 |
901.06 |
1807 |
307 |
Querétaro |
Ezequiel Montes |
412 |
46601 |
884.10 |
1812 |
359 |
Querétaro |
Pedro Escobedo |
627 |
77600 |
807.99 |
1801 |
361 |
Querétaro |
Amealco de Bonfil |
559 |
69262 |
807.08 |
1805 |
419 |
Querétaro |
Colón |
525 |
70110 |
748.82 |
1817 |
424 |
Querétaro |
Tequisquiapan |
596 |
80132 |
743.77 |
1804 |
502 |
Querétaro |
Cadereyta de Montes |
525 |
78055 |
672.60 |
1808 |
504 |
Querétaro |
Huimilpan |
287 |
42916 |
668.75 |
1815 |
594 |
Querétaro |
San Joaquín |
63 |
10475 |
601.43 |
1802 |
697 |
Querétaro |
Pinal de Amoles |
152 |
28450 |
534.27 |
1818 |
739 |
Querétaro |
Tolimán |
220 |
42983 |
511.83 |
1813 |
993 |
Querétaro |
Peñamiller |
84 |
22337 |
376.06 |
1803 |
1055 |
Querétaro |
Arroyo Seco |
53 |
15014 |
353.00 |
1810 |
1081 |
Querétaro |
Landa de Matamoros |
71 |
20500 |
346.34 |
1819 |
2470 |
Querétaro |
No Especificado |
75 |
NA |
NA |
Posición de los municipios de Queretaro en el mes
kable(delMunMes[delMunMes$estado=="Querétaro",c(7,3,4,2,5,6)])
1814 |
21 |
Querétaro |
Querétaro |
2869 |
992423 |
289.09 |
1816 |
140 |
Querétaro |
San Juan del Río |
576 |
321648 |
179.08 |
1809 |
236 |
Querétaro |
Jalpan de Serra |
44 |
30075 |
146.30 |
1811 |
251 |
Querétaro |
El Marqués |
265 |
183234 |
144.62 |
1807 |
276 |
Querétaro |
Ezequiel Montes |
64 |
46601 |
137.34 |
1812 |
295 |
Querétaro |
Pedro Escobedo |
104 |
77600 |
134.02 |
1806 |
316 |
Querétaro |
Corregidora |
279 |
213526 |
130.66 |
1804 |
391 |
Querétaro |
Cadereyta de Montes |
91 |
78055 |
116.58 |
1817 |
399 |
Querétaro |
Tequisquiapan |
92 |
80132 |
114.81 |
1818 |
414 |
Querétaro |
Tolimán |
48 |
42983 |
111.67 |
1805 |
466 |
Querétaro |
Colón |
74 |
70110 |
105.55 |
1808 |
540 |
Querétaro |
Huimilpan |
41 |
42916 |
95.54 |
1815 |
541 |
Querétaro |
San Joaquín |
10 |
10475 |
95.47 |
1801 |
593 |
Querétaro |
Amealco de Bonfil |
62 |
69262 |
89.52 |
1802 |
693 |
Querétaro |
Pinal de Amoles |
22 |
28450 |
77.33 |
1803 |
1090 |
Querétaro |
Arroyo Seco |
7 |
15014 |
46.62 |
1813 |
1203 |
Querétaro |
Peñamiller |
9 |
22337 |
40.29 |
1810 |
1224 |
Querétaro |
Landa de Matamoros |
8 |
20500 |
39.02 |
1819 |
2470 |
Querétaro |
No Especificado |
13 |
NA |
NA |
Delitos en Querétaro
delitosQRO2020<-subset(delitos2, delitos2$Clave_Ent==22)
delitosQRO2020$periodo<-NA
delitosQRO2020$mes<-NA
m<-unique(delitosQRO2020$meses)
for (i in m) {
delitosQRO2020$mes[delitosQRO2020$meses==i]<-switch (i,"Enero"="01","Febrero"="02","Marzo"="03", "Abril"="04","Mayo"="05","Junio"="06","Julio"="07","Agosto"="08","Septiembre"="09","Octubre"="10","Noviembre"="11", "Diciembre"="12")
}
delitosQRO2020$periodo<-paste0(delitosQRO2020$Ano,delitosQRO2020$mes)
catalogoDelitos<-as.data.frame(sort(unique(delitosQRO2020$Subtipo.de.delito)))
losMeses2020<-sort(unique(delitosQRO2020$periodo))
for (i in 1:length(losMeses2020)){
a<-subset(delitosQRO2020, delitosQRO2020$periodo==losMeses2020[i])
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
catalogoDelitos<-cbind(catalogoDelitos,b)
}
names(catalogoDelitos)<-c("Delito", losMeses2020)
stop1<-0
dondeBuscar<-colSums(catalogoDelitos[2:ncol(catalogoDelitos)])
for (i in 1:length(dondeBuscar)) {
if(dondeBuscar[i]==0){
stop1<-i;
break;
}
}
if(stop1==0){stop1=ncol(catalogoDelitos)}
stop2=stop1-12
#Superior al mismo périodo del año anterior
comparaAniAnterior<-catalogoDelitos[,c(1,stop2,stop1)]
comparaAniAnteriorTasa<-comparaAniAnterior
comparaAniAnteriorTasa[2]<-round(comparaAniAnteriorTasa[2]/ent$year2019[22]*1000,3)
comparaAniAnteriorTasa[3]<-round(comparaAniAnteriorTasa[3]/ent$year2020[22]*1000,3)
names(comparaAniAnteriorTasa)<-c("Delito", "Tasa 2019", "Tasa 2020")
comparaAniAnteriorTasa$cambio<-NA
comparaAniAnteriorTasa$cambio<-round((comparaAniAnteriorTasa[3]-comparaAniAnteriorTasa[2])/comparaAniAnteriorTasa[2],2)
aumentoContraUnAno<-comparaAniAnteriorTasa$Delito[comparaAniAnteriorTasa$cambio>0 & !is.na(comparaAniAnteriorTasa$cambio)]
maximoAbsoluto<-apply(X = catalogoDelitos[,2:stop1], MARGIN = 1,max)
estePeriodo<-catalogoDelitos[,stop1]
DelitosEnMaximoAbsoluto<-catalogoDelitos[estePeriodo!=0 & estePeriodo>=maximoAbsoluto,c(1, stop1)]
names(DelitosEnMaximoAbsoluto)<-c(paste0("Delitos que alcanzan su máximo histórico en ",esteMes ,"(Números absolutos)"),"Incidentes")
Delitos que aumentaron entre Junio y Julio
cambioMes<-cbind(catalogoDelitos[,1], catalogoDelitos[,(stop1-1):stop1])
cambioMes$tasadeCambio<-NA
cambioMes$tasadeCambio<-round((cambioMes[,3]-cambioMes[,2])/cambioMes[,2]*100,2)
cambioMes<-cambioMes[order(cambioMes$tasadeCambio,decreasing = TRUE),]
cambioMes1<-cambioMes[!is.infinite(cambioMes[,4]) & !is.nan(cambioMes[,4]), ]
cambioMes1<-cambioMes1[order(cambioMes1[3], decreasing = TRUE),]
names(cambioMes1)<-c("Delito", paste0("Carpetas en ", anterior), paste0("Carpetas en ", esteMes),"Tasa de cambio (%)")
kable(cambioMes1)
34 |
Otros robos |
906 |
926 |
2.21 |
25 |
Lesiones dolosas |
410 |
392 |
-4.39 |
30 |
Otros delitos del Fuero Común |
355 |
368 |
3.66 |
55 |
Violencia familiar |
348 |
354 |
1.72 |
6 |
Amenazas |
363 |
348 |
-4.13 |
45 |
Robo de vehículo automotor |
285 |
323 |
13.33 |
18 |
Fraude |
307 |
289 |
-5.86 |
38 |
Robo a negocio |
160 |
182 |
13.75 |
36 |
Robo a casa habitación |
177 |
181 |
2.26 |
9 |
Daño a la propiedad |
141 |
130 |
-7.80 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
113 |
129 |
14.16 |
40 |
Robo a transeúnte en vía pública |
123 |
116 |
-5.69 |
26 |
Narcomenudeo |
92 |
97 |
5.43 |
24 |
Lesiones culposas |
97 |
92 |
-5.15 |
3 |
Abuso sexual |
54 |
81 |
50.00 |
11 |
Despojo |
86 |
75 |
-12.79 |
4 |
Acoso sexual |
54 |
70 |
29.63 |
2 |
Abuso de confianza |
84 |
58 |
-30.95 |
23 |
Incumplimiento de obligaciones de asistencia familiar |
42 |
52 |
23.81 |
53 |
Violación simple |
42 |
38 |
-9.52 |
42 |
Robo de autopartes |
52 |
37 |
-28.85 |
46 |
Robo en transporte individual |
19 |
33 |
73.68 |
14 |
Extorsión |
20 |
33 |
65.00 |
29 |
Otros delitos contra la sociedad |
40 |
33 |
-17.50 |
47 |
Robo en transporte público colectivo |
24 |
31 |
29.17 |
28 |
Otros delitos contra la familia |
17 |
29 |
70.59 |
5 |
Allanamiento de morada |
23 |
26 |
13.04 |
19 |
Homicidio culposo |
30 |
24 |
-20.00 |
43 |
Robo de ganado |
11 |
22 |
100.00 |
52 |
Violación equiparada |
13 |
19 |
46.15 |
31 |
Otros delitos que atentan contra la libertad personal |
10 |
17 |
70.00 |
20 |
Homicidio doloso |
9 |
13 |
44.44 |
54 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
13 |
10 |
-23.08 |
48 |
Robo en transporte público individual |
14 |
10 |
-28.57 |
15 |
Falsedad |
11 |
9 |
-18.18 |
16 |
Falsificación |
20 |
8 |
-60.00 |
27 |
Otros delitos contra el patrimonio |
4 |
6 |
50.00 |
1 |
Aborto |
1 |
4 |
300.00 |
39 |
Robo a transeúnte en espacio abierto al público |
9 |
4 |
-55.56 |
32 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
4 |
3 |
-25.00 |
12 |
Electorales |
26 |
2 |
-92.31 |
17 |
Feminicidio |
1 |
1 |
0.00 |
7 |
Contra el medio ambiente |
1 |
0 |
-100.00 |
49 |
Secuestro |
1 |
0 |
-100.00 |
Querétaro: Los delitos que han alcanzado su máximo histórico (en números absolutos) en este mes
kable(DelitosEnMaximoAbsoluto)
3 |
Abuso sexual |
81 |
28 |
Otros delitos contra la familia |
29 |
31 |
Otros delitos que atentan contra la libertad personal |
17 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
129 |
Querétaro: Los delitos más frecuentes en Julio
elMes<-catalogoDelitos[,c(1,stop1)]
elMes<-elMes[order(elMes[2], decreasing =TRUE),]
names(elMes)<-c(paste0("Delitos más frecuentes en ",esteMes),esteMes)
kable(elMes)
34 |
Otros robos |
926 |
25 |
Lesiones dolosas |
392 |
30 |
Otros delitos del Fuero Común |
368 |
55 |
Violencia familiar |
354 |
6 |
Amenazas |
348 |
45 |
Robo de vehículo automotor |
323 |
18 |
Fraude |
289 |
38 |
Robo a negocio |
182 |
36 |
Robo a casa habitación |
181 |
9 |
Daño a la propiedad |
130 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
129 |
40 |
Robo a transeúnte en vía pública |
116 |
26 |
Narcomenudeo |
97 |
24 |
Lesiones culposas |
92 |
3 |
Abuso sexual |
81 |
11 |
Despojo |
75 |
4 |
Acoso sexual |
70 |
2 |
Abuso de confianza |
58 |
23 |
Incumplimiento de obligaciones de asistencia familiar |
52 |
53 |
Violación simple |
38 |
42 |
Robo de autopartes |
37 |
14 |
Extorsión |
33 |
29 |
Otros delitos contra la sociedad |
33 |
46 |
Robo en transporte individual |
33 |
47 |
Robo en transporte público colectivo |
31 |
28 |
Otros delitos contra la familia |
29 |
5 |
Allanamiento de morada |
26 |
19 |
Homicidio culposo |
24 |
43 |
Robo de ganado |
22 |
52 |
Violación equiparada |
19 |
31 |
Otros delitos que atentan contra la libertad personal |
17 |
20 |
Homicidio doloso |
13 |
48 |
Robo en transporte público individual |
10 |
54 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
10 |
15 |
Falsedad |
9 |
16 |
Falsificación |
8 |
27 |
Otros delitos contra el patrimonio |
6 |
1 |
Aborto |
4 |
39 |
Robo a transeúnte en espacio abierto al público |
4 |
32 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
3 |
44 |
Robo de maquinaria |
3 |
12 |
Electorales |
2 |
17 |
Feminicidio |
1 |
7 |
Contra el medio ambiente |
0 |
8 |
Corrupción de menores |
0 |
10 |
Delitos cometidos por servidores públicos |
0 |
13 |
Evasión de presos |
0 |
21 |
Hostigamiento sexual |
0 |
22 |
Incesto |
0 |
35 |
Rapto |
0 |
37 |
Robo a institución bancaria |
0 |
41 |
Robo a transportista |
0 |
49 |
Secuestro |
0 |
50 |
Tráfico de menores |
0 |
51 |
Trata de personas |
0 |
Serie Mensual por delito en Querétaro
kable(catalogoDelitos)
Aborto |
0 |
2 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2 |
0 |
1 |
1 |
0 |
0 |
0 |
2 |
1 |
0 |
1 |
0 |
0 |
4 |
1 |
1 |
0 |
2 |
3 |
1 |
1 |
0 |
1 |
0 |
0 |
2 |
4 |
0 |
3 |
1 |
0 |
2 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
3 |
2 |
3 |
1 |
3 |
4 |
0 |
3 |
3 |
1 |
3 |
0 |
5 |
4 |
0 |
3 |
3 |
3 |
3 |
5 |
2 |
4 |
3 |
1 |
4 |
0 |
0 |
0 |
0 |
0 |
Abuso de confianza |
36 |
23 |
30 |
33 |
40 |
39 |
60 |
32 |
39 |
41 |
54 |
32 |
44 |
31 |
52 |
42 |
54 |
54 |
44 |
35 |
67 |
52 |
39 |
50 |
46 |
59 |
49 |
54 |
60 |
44 |
60 |
61 |
64 |
46 |
48 |
44 |
42 |
53 |
55 |
64 |
58 |
45 |
68 |
55 |
44 |
49 |
46 |
43 |
53 |
64 |
55 |
44 |
53 |
48 |
75 |
59 |
61 |
69 |
47 |
53 |
53 |
48 |
55 |
38 |
26 |
33 |
54 |
50 |
66 |
53 |
50 |
61 |
66 |
76 |
77 |
56 |
46 |
84 |
58 |
0 |
0 |
0 |
0 |
0 |
Abuso sexual |
20 |
13 |
14 |
25 |
25 |
17 |
21 |
23 |
20 |
29 |
26 |
17 |
22 |
14 |
16 |
20 |
28 |
24 |
31 |
28 |
34 |
25 |
30 |
22 |
27 |
25 |
34 |
27 |
43 |
35 |
30 |
23 |
27 |
32 |
32 |
23 |
19 |
29 |
35 |
43 |
31 |
39 |
46 |
27 |
37 |
34 |
39 |
34 |
29 |
47 |
48 |
54 |
59 |
44 |
50 |
57 |
34 |
39 |
39 |
40 |
36 |
39 |
69 |
22 |
47 |
46 |
56 |
41 |
51 |
54 |
48 |
42 |
42 |
40 |
69 |
68 |
49 |
54 |
81 |
0 |
0 |
0 |
0 |
0 |
Acoso sexual |
5 |
1 |
0 |
0 |
3 |
3 |
0 |
4 |
1 |
2 |
2 |
2 |
1 |
4 |
3 |
6 |
4 |
5 |
6 |
2 |
2 |
6 |
0 |
1 |
1 |
4 |
1 |
2 |
7 |
3 |
3 |
9 |
4 |
4 |
4 |
2 |
2 |
16 |
9 |
18 |
9 |
10 |
13 |
13 |
11 |
12 |
14 |
1 |
11 |
14 |
14 |
19 |
17 |
19 |
22 |
37 |
31 |
33 |
44 |
33 |
34 |
55 |
52 |
54 |
42 |
50 |
48 |
57 |
57 |
60 |
42 |
48 |
39 |
42 |
76 |
65 |
65 |
54 |
70 |
0 |
0 |
0 |
0 |
0 |
Allanamiento de morada |
10 |
10 |
9 |
5 |
12 |
6 |
5 |
4 |
5 |
9 |
16 |
10 |
10 |
10 |
10 |
12 |
9 |
11 |
15 |
16 |
13 |
20 |
11 |
12 |
11 |
17 |
17 |
11 |
17 |
15 |
12 |
13 |
15 |
18 |
12 |
14 |
15 |
10 |
16 |
18 |
27 |
26 |
31 |
13 |
23 |
14 |
8 |
31 |
26 |
20 |
26 |
25 |
25 |
20 |
39 |
32 |
17 |
28 |
30 |
27 |
23 |
27 |
22 |
24 |
27 |
21 |
30 |
28 |
22 |
23 |
25 |
24 |
17 |
25 |
22 |
25 |
18 |
23 |
26 |
0 |
0 |
0 |
0 |
0 |
Amenazas |
78 |
81 |
95 |
94 |
88 |
85 |
103 |
98 |
95 |
102 |
103 |
86 |
71 |
67 |
89 |
106 |
113 |
189 |
187 |
223 |
159 |
184 |
148 |
174 |
169 |
186 |
176 |
189 |
294 |
231 |
208 |
281 |
241 |
245 |
230 |
215 |
233 |
210 |
287 |
263 |
315 |
276 |
315 |
297 |
273 |
341 |
278 |
273 |
319 |
307 |
333 |
376 |
417 |
344 |
399 |
391 |
308 |
367 |
353 |
328 |
342 |
390 |
380 |
251 |
201 |
278 |
322 |
350 |
333 |
324 |
271 |
281 |
296 |
308 |
406 |
429 |
371 |
363 |
348 |
0 |
0 |
0 |
0 |
0 |
Contra el medio ambiente |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Corrupción de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Daño a la propiedad |
167 |
153 |
186 |
178 |
172 |
168 |
158 |
132 |
165 |
143 |
186 |
174 |
155 |
183 |
159 |
185 |
213 |
391 |
430 |
461 |
477 |
402 |
394 |
412 |
407 |
387 |
432 |
395 |
477 |
447 |
385 |
455 |
412 |
522 |
437 |
444 |
478 |
395 |
433 |
426 |
436 |
510 |
487 |
462 |
473 |
465 |
430 |
426 |
451 |
436 |
484 |
481 |
506 |
452 |
272 |
116 |
120 |
112 |
102 |
128 |
113 |
128 |
107 |
115 |
97 |
108 |
106 |
131 |
134 |
119 |
108 |
94 |
116 |
125 |
135 |
137 |
138 |
141 |
130 |
0 |
0 |
0 |
0 |
0 |
Delitos cometidos por servidores públicos |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Despojo |
43 |
40 |
45 |
51 |
35 |
33 |
48 |
38 |
34 |
38 |
28 |
50 |
41 |
47 |
47 |
38 |
36 |
46 |
38 |
49 |
41 |
46 |
37 |
45 |
36 |
48 |
51 |
55 |
56 |
64 |
51 |
61 |
51 |
41 |
54 |
29 |
45 |
57 |
65 |
47 |
68 |
60 |
60 |
72 |
61 |
78 |
58 |
49 |
69 |
71 |
83 |
72 |
73 |
73 |
81 |
66 |
65 |
69 |
66 |
62 |
67 |
77 |
58 |
45 |
53 |
71 |
104 |
86 |
70 |
90 |
62 |
78 |
76 |
86 |
77 |
91 |
80 |
86 |
75 |
0 |
0 |
0 |
0 |
0 |
Electorales |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
3 |
0 |
0 |
5 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
3 |
26 |
12 |
2 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
3 |
0 |
0 |
3 |
3 |
2 |
0 |
0 |
2 |
0 |
2 |
2 |
2 |
5 |
18 |
26 |
2 |
0 |
0 |
0 |
0 |
0 |
Evasión de presos |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Extorsión |
2 |
0 |
1 |
0 |
0 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
4 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
3 |
5 |
4 |
5 |
7 |
13 |
4 |
13 |
4 |
13 |
7 |
12 |
12 |
10 |
14 |
33 |
20 |
13 |
23 |
19 |
38 |
35 |
14 |
20 |
16 |
14 |
26 |
16 |
25 |
15 |
21 |
18 |
18 |
20 |
22 |
25 |
17 |
19 |
11 |
18 |
20 |
27 |
24 |
20 |
33 |
0 |
0 |
0 |
0 |
0 |
Falsedad |
1 |
2 |
2 |
4 |
5 |
5 |
3 |
2 |
5 |
2 |
4 |
2 |
6 |
3 |
18 |
8 |
9 |
8 |
2 |
10 |
11 |
7 |
6 |
7 |
4 |
4 |
4 |
10 |
14 |
7 |
7 |
6 |
6 |
7 |
3 |
7 |
4 |
6 |
6 |
11 |
13 |
6 |
5 |
12 |
8 |
9 |
4 |
4 |
7 |
6 |
8 |
12 |
4 |
11 |
6 |
11 |
13 |
8 |
8 |
7 |
9 |
13 |
9 |
3 |
6 |
2 |
8 |
4 |
5 |
14 |
10 |
5 |
11 |
9 |
11 |
17 |
9 |
11 |
9 |
0 |
0 |
0 |
0 |
0 |
Falsificación |
65 |
40 |
48 |
40 |
59 |
63 |
47 |
44 |
61 |
56 |
63 |
56 |
48 |
40 |
42 |
45 |
52 |
45 |
64 |
52 |
33 |
44 |
47 |
44 |
33 |
38 |
48 |
28 |
43 |
34 |
40 |
25 |
30 |
51 |
33 |
35 |
34 |
35 |
27 |
56 |
56 |
56 |
57 |
52 |
60 |
70 |
38 |
39 |
65 |
42 |
61 |
73 |
63 |
58 |
73 |
49 |
57 |
68 |
46 |
40 |
47 |
36 |
29 |
11 |
12 |
20 |
18 |
33 |
21 |
32 |
22 |
19 |
11 |
11 |
21 |
23 |
9 |
20 |
8 |
0 |
0 |
0 |
0 |
0 |
Feminicidio |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
0 |
2 |
1 |
1 |
0 |
0 |
1 |
2 |
1 |
2 |
0 |
2 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
2 |
1 |
4 |
2 |
0 |
1 |
0 |
1 |
1 |
2 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
Fraude |
115 |
113 |
138 |
114 |
134 |
138 |
134 |
106 |
110 |
124 |
130 |
130 |
104 |
106 |
117 |
141 |
172 |
153 |
153 |
167 |
167 |
132 |
161 |
119 |
157 |
171 |
181 |
159 |
192 |
186 |
152 |
188 |
143 |
195 |
184 |
126 |
143 |
157 |
211 |
156 |
189 |
172 |
189 |
209 |
185 |
182 |
174 |
152 |
189 |
164 |
221 |
207 |
222 |
180 |
257 |
224 |
206 |
210 |
192 |
208 |
241 |
192 |
173 |
123 |
155 |
199 |
245 |
278 |
291 |
309 |
276 |
282 |
254 |
272 |
320 |
275 |
298 |
307 |
289 |
0 |
0 |
0 |
0 |
0 |
Homicidio culposo |
23 |
29 |
24 |
20 |
30 |
25 |
24 |
20 |
30 |
25 |
32 |
34 |
22 |
23 |
30 |
28 |
33 |
23 |
33 |
24 |
18 |
23 |
21 |
25 |
20 |
27 |
18 |
30 |
28 |
26 |
24 |
27 |
27 |
28 |
14 |
27 |
30 |
20 |
30 |
27 |
25 |
34 |
29 |
21 |
22 |
18 |
33 |
21 |
25 |
32 |
33 |
27 |
28 |
20 |
23 |
26 |
27 |
21 |
34 |
31 |
24 |
27 |
23 |
24 |
26 |
24 |
25 |
18 |
21 |
27 |
24 |
20 |
23 |
23 |
28 |
22 |
31 |
30 |
24 |
0 |
0 |
0 |
0 |
0 |
Homicidio doloso |
9 |
9 |
12 |
11 |
11 |
10 |
12 |
13 |
10 |
13 |
13 |
8 |
12 |
9 |
12 |
8 |
14 |
7 |
7 |
6 |
15 |
8 |
12 |
8 |
12 |
12 |
14 |
21 |
8 |
21 |
10 |
20 |
19 |
14 |
9 |
15 |
14 |
10 |
15 |
12 |
14 |
16 |
14 |
18 |
22 |
7 |
16 |
22 |
13 |
16 |
18 |
13 |
15 |
11 |
17 |
17 |
20 |
9 |
12 |
15 |
12 |
11 |
26 |
11 |
18 |
8 |
15 |
23 |
11 |
22 |
13 |
12 |
16 |
14 |
16 |
22 |
21 |
9 |
13 |
0 |
0 |
0 |
0 |
0 |
Hostigamiento sexual |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incesto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incumplimiento de obligaciones de asistencia familiar |
67 |
75 |
59 |
61 |
64 |
66 |
67 |
85 |
66 |
79 |
76 |
47 |
58 |
57 |
79 |
69 |
92 |
50 |
103 |
75 |
74 |
63 |
63 |
46 |
63 |
50 |
84 |
77 |
78 |
87 |
76 |
68 |
85 |
79 |
57 |
44 |
69 |
72 |
50 |
63 |
52 |
74 |
38 |
56 |
43 |
64 |
53 |
29 |
43 |
39 |
73 |
53 |
63 |
66 |
58 |
71 |
52 |
82 |
52 |
45 |
75 |
71 |
60 |
11 |
9 |
18 |
57 |
47 |
45 |
62 |
55 |
45 |
29 |
33 |
67 |
50 |
37 |
42 |
52 |
0 |
0 |
0 |
0 |
0 |
Lesiones culposas |
37 |
42 |
45 |
45 |
42 |
45 |
32 |
37 |
44 |
53 |
51 |
68 |
44 |
46 |
45 |
59 |
41 |
83 |
70 |
72 |
83 |
82 |
95 |
64 |
76 |
53 |
71 |
71 |
78 |
61 |
52 |
60 |
70 |
72 |
62 |
67 |
59 |
65 |
75 |
74 |
81 |
69 |
83 |
85 |
70 |
91 |
77 |
64 |
78 |
70 |
71 |
65 |
80 |
69 |
77 |
91 |
105 |
87 |
83 |
96 |
56 |
80 |
91 |
63 |
40 |
73 |
57 |
64 |
82 |
99 |
71 |
71 |
64 |
63 |
89 |
95 |
85 |
97 |
92 |
0 |
0 |
0 |
0 |
0 |
Lesiones dolosas |
176 |
194 |
205 |
244 |
236 |
240 |
235 |
246 |
227 |
245 |
290 |
266 |
172 |
173 |
219 |
239 |
286 |
322 |
320 |
405 |
357 |
366 |
304 |
409 |
367 |
315 |
366 |
356 |
561 |
458 |
389 |
422 |
375 |
399 |
355 |
371 |
325 |
335 |
448 |
459 |
504 |
432 |
519 |
419 |
421 |
509 |
400 |
423 |
402 |
413 |
503 |
483 |
614 |
522 |
499 |
448 |
498 |
461 |
380 |
467 |
353 |
417 |
488 |
433 |
326 |
398 |
481 |
393 |
415 |
397 |
340 |
356 |
308 |
332 |
480 |
483 |
458 |
410 |
392 |
0 |
0 |
0 |
0 |
0 |
Narcomenudeo |
21 |
22 |
18 |
19 |
18 |
18 |
10 |
7 |
10 |
30 |
30 |
21 |
62 |
84 |
79 |
63 |
42 |
61 |
72 |
74 |
72 |
68 |
71 |
78 |
97 |
74 |
91 |
66 |
81 |
84 |
91 |
70 |
58 |
67 |
82 |
81 |
85 |
79 |
85 |
98 |
92 |
83 |
106 |
112 |
97 |
115 |
88 |
109 |
139 |
133 |
138 |
139 |
165 |
158 |
152 |
119 |
117 |
126 |
107 |
86 |
133 |
122 |
102 |
77 |
78 |
72 |
79 |
89 |
106 |
97 |
90 |
89 |
88 |
79 |
117 |
100 |
76 |
92 |
97 |
0 |
0 |
0 |
0 |
0 |
Otros delitos contra el patrimonio |
2 |
0 |
3 |
4 |
4 |
2 |
4 |
2 |
2 |
2 |
5 |
3 |
1 |
3 |
2 |
2 |
6 |
1 |
2 |
3 |
3 |
2 |
2 |
1 |
1 |
5 |
5 |
4 |
3 |
2 |
4 |
2 |
5 |
3 |
1 |
3 |
1 |
4 |
4 |
5 |
6 |
1 |
3 |
3 |
3 |
4 |
2 |
1 |
1 |
3 |
9 |
2 |
3 |
5 |
7 |
4 |
6 |
4 |
1 |
3 |
4 |
2 |
5 |
3 |
2 |
4 |
5 |
5 |
5 |
3 |
5 |
4 |
7 |
4 |
4 |
6 |
3 |
4 |
6 |
0 |
0 |
0 |
0 |
0 |
Otros delitos contra la familia |
3 |
4 |
3 |
6 |
5 |
4 |
5 |
4 |
10 |
8 |
4 |
10 |
4 |
8 |
5 |
15 |
11 |
4 |
10 |
14 |
8 |
12 |
10 |
11 |
9 |
5 |
11 |
13 |
17 |
12 |
13 |
23 |
11 |
14 |
10 |
26 |
21 |
17 |
16 |
14 |
16 |
14 |
19 |
26 |
15 |
18 |
18 |
17 |
12 |
6 |
13 |
17 |
28 |
15 |
20 |
29 |
15 |
18 |
14 |
20 |
14 |
13 |
23 |
12 |
11 |
14 |
26 |
19 |
22 |
17 |
9 |
21 |
22 |
13 |
24 |
21 |
16 |
17 |
29 |
0 |
0 |
0 |
0 |
0 |
Otros delitos contra la sociedad |
12 |
8 |
14 |
9 |
5 |
13 |
8 |
6 |
10 |
11 |
4 |
8 |
12 |
7 |
18 |
15 |
16 |
13 |
8 |
7 |
9 |
6 |
9 |
4 |
6 |
12 |
11 |
14 |
14 |
6 |
13 |
12 |
16 |
9 |
9 |
10 |
3 |
17 |
11 |
7 |
16 |
11 |
14 |
5 |
10 |
9 |
13 |
16 |
8 |
9 |
11 |
15 |
12 |
11 |
7 |
8 |
25 |
39 |
23 |
15 |
15 |
17 |
29 |
16 |
25 |
12 |
23 |
30 |
54 |
47 |
63 |
69 |
61 |
50 |
46 |
40 |
29 |
40 |
33 |
0 |
0 |
0 |
0 |
0 |
Otros delitos del Fuero Común |
106 |
112 |
121 |
96 |
107 |
142 |
130 |
120 |
114 |
136 |
166 |
163 |
122 |
133 |
163 |
148 |
202 |
233 |
268 |
245 |
267 |
269 |
236 |
275 |
252 |
259 |
317 |
252 |
304 |
350 |
300 |
323 |
287 |
321 |
262 |
305 |
302 |
348 |
388 |
382 |
366 |
355 |
349 |
339 |
373 |
428 |
318 |
346 |
376 |
364 |
359 |
397 |
469 |
424 |
465 |
461 |
414 |
453 |
401 |
339 |
402 |
402 |
398 |
295 |
326 |
328 |
302 |
292 |
310 |
346 |
321 |
341 |
311 |
318 |
363 |
366 |
381 |
355 |
368 |
0 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la libertad personal |
3 |
1 |
2 |
3 |
1 |
8 |
2 |
3 |
2 |
3 |
3 |
2 |
3 |
0 |
2 |
2 |
1 |
2 |
3 |
2 |
1 |
6 |
3 |
1 |
8 |
3 |
3 |
4 |
0 |
8 |
6 |
0 |
1 |
7 |
1 |
3 |
1 |
2 |
2 |
2 |
1 |
2 |
1 |
4 |
4 |
3 |
5 |
3 |
3 |
1 |
4 |
3 |
10 |
5 |
7 |
4 |
7 |
2 |
4 |
2 |
4 |
8 |
15 |
13 |
7 |
7 |
4 |
5 |
12 |
9 |
10 |
11 |
7 |
5 |
10 |
16 |
15 |
10 |
17 |
0 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
7 |
1 |
7 |
4 |
6 |
6 |
2 |
2 |
4 |
4 |
6 |
4 |
3 |
4 |
4 |
2 |
9 |
1 |
5 |
8 |
1 |
2 |
2 |
4 |
1 |
4 |
5 |
2 |
6 |
1 |
7 |
7 |
2 |
3 |
6 |
3 |
4 |
7 |
2 |
3 |
2 |
1 |
2 |
2 |
3 |
2 |
0 |
1 |
3 |
4 |
6 |
4 |
6 |
3 |
5 |
5 |
5 |
5 |
2 |
3 |
6 |
7 |
2 |
5 |
4 |
4 |
7 |
2 |
4 |
4 |
4 |
5 |
5 |
3 |
6 |
5 |
3 |
4 |
3 |
0 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la vida y la integridad corporal |
50 |
36 |
60 |
58 |
47 |
52 |
44 |
44 |
53 |
72 |
59 |
84 |
24 |
35 |
44 |
40 |
48 |
74 |
55 |
81 |
66 |
54 |
56 |
49 |
54 |
70 |
69 |
67 |
61 |
63 |
58 |
61 |
48 |
83 |
63 |
67 |
64 |
54 |
66 |
59 |
80 |
64 |
62 |
55 |
57 |
61 |
66 |
79 |
67 |
70 |
72 |
76 |
73 |
72 |
95 |
84 |
80 |
85 |
80 |
86 |
77 |
93 |
90 |
76 |
80 |
83 |
76 |
106 |
100 |
80 |
88 |
73 |
91 |
80 |
93 |
110 |
124 |
113 |
129 |
0 |
0 |
0 |
0 |
0 |
Otros robos |
573 |
539 |
543 |
542 |
560 |
557 |
534 |
563 |
580 |
627 |
556 |
494 |
556 |
480 |
559 |
591 |
551 |
649 |
719 |
788 |
731 |
822 |
724 |
649 |
716 |
710 |
797 |
710 |
777 |
877 |
805 |
898 |
887 |
912 |
946 |
844 |
816 |
795 |
866 |
887 |
926 |
947 |
903 |
929 |
865 |
931 |
800 |
828 |
963 |
940 |
1015 |
942 |
884 |
938 |
967 |
978 |
871 |
1029 |
950 |
1018 |
936 |
905 |
933 |
734 |
722 |
677 |
785 |
858 |
872 |
893 |
822 |
830 |
788 |
781 |
927 |
847 |
945 |
906 |
926 |
0 |
0 |
0 |
0 |
0 |
Rapto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a casa habitación |
165 |
161 |
215 |
220 |
236 |
202 |
184 |
212 |
223 |
192 |
201 |
206 |
194 |
204 |
213 |
218 |
213 |
285 |
292 |
317 |
289 |
383 |
309 |
365 |
308 |
291 |
351 |
282 |
304 |
331 |
327 |
327 |
327 |
345 |
356 |
303 |
369 |
271 |
344 |
331 |
312 |
270 |
352 |
361 |
357 |
320 |
282 |
360 |
340 |
260 |
278 |
303 |
320 |
265 |
303 |
290 |
266 |
267 |
264 |
253 |
317 |
261 |
219 |
188 |
179 |
190 |
227 |
227 |
226 |
229 |
256 |
216 |
218 |
181 |
206 |
201 |
235 |
177 |
181 |
0 |
0 |
0 |
0 |
0 |
Robo a institución bancaria |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a negocio |
177 |
129 |
192 |
191 |
140 |
152 |
153 |
157 |
136 |
151 |
140 |
132 |
154 |
132 |
154 |
152 |
185 |
220 |
294 |
244 |
249 |
296 |
264 |
269 |
257 |
256 |
314 |
252 |
261 |
229 |
271 |
295 |
294 |
294 |
292 |
348 |
296 |
267 |
262 |
249 |
262 |
215 |
224 |
237 |
223 |
292 |
299 |
226 |
257 |
248 |
268 |
281 |
312 |
272 |
312 |
319 |
252 |
297 |
299 |
262 |
286 |
238 |
270 |
214 |
219 |
232 |
259 |
293 |
293 |
336 |
286 |
270 |
217 |
176 |
164 |
167 |
169 |
160 |
182 |
0 |
0 |
0 |
0 |
0 |
Robo a transeúnte en espacio abierto al público |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
2 |
2 |
3 |
1 |
1 |
2 |
3 |
9 |
7 |
6 |
7 |
6 |
5 |
4 |
18 |
8 |
8 |
6 |
16 |
27 |
22 |
24 |
17 |
13 |
14 |
30 |
0 |
11 |
20 |
31 |
11 |
13 |
21 |
13 |
45 |
14 |
22 |
16 |
14 |
14 |
7 |
14 |
14 |
8 |
22 |
7 |
12 |
16 |
8 |
22 |
11 |
14 |
7 |
9 |
6 |
9 |
7 |
9 |
8 |
8 |
5 |
12 |
4 |
12 |
3 |
11 |
9 |
9 |
4 |
0 |
0 |
0 |
0 |
0 |
Robo a transeúnte en vía pública |
101 |
58 |
110 |
80 |
97 |
80 |
83 |
88 |
116 |
118 |
108 |
90 |
87 |
64 |
114 |
104 |
110 |
149 |
158 |
186 |
185 |
172 |
150 |
176 |
140 |
147 |
157 |
157 |
151 |
161 |
141 |
169 |
169 |
195 |
194 |
195 |
199 |
178 |
159 |
135 |
181 |
160 |
178 |
170 |
137 |
203 |
153 |
147 |
124 |
133 |
115 |
145 |
145 |
122 |
113 |
137 |
146 |
162 |
156 |
116 |
110 |
134 |
149 |
85 |
91 |
110 |
133 |
141 |
127 |
120 |
110 |
122 |
101 |
95 |
135 |
102 |
127 |
123 |
116 |
0 |
0 |
0 |
0 |
0 |
Robo a transportista |
8 |
20 |
9 |
10 |
10 |
13 |
8 |
10 |
6 |
16 |
17 |
14 |
20 |
22 |
8 |
10 |
15 |
14 |
10 |
1 |
7 |
11 |
4 |
3 |
10 |
7 |
8 |
2 |
3 |
6 |
10 |
11 |
11 |
16 |
4 |
10 |
33 |
17 |
21 |
18 |
11 |
2 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo de autopartes |
33 |
26 |
39 |
34 |
37 |
30 |
52 |
34 |
34 |
41 |
40 |
28 |
36 |
22 |
16 |
16 |
14 |
49 |
62 |
52 |
46 |
49 |
43 |
40 |
55 |
64 |
57 |
72 |
55 |
76 |
53 |
70 |
76 |
86 |
87 |
57 |
78 |
86 |
100 |
94 |
116 |
90 |
104 |
86 |
104 |
90 |
73 |
73 |
110 |
96 |
75 |
68 |
63 |
69 |
76 |
58 |
61 |
71 |
39 |
45 |
70 |
61 |
81 |
68 |
46 |
49 |
52 |
62 |
49 |
38 |
47 |
31 |
48 |
64 |
48 |
53 |
42 |
52 |
37 |
0 |
0 |
0 |
0 |
0 |
Robo de ganado |
26 |
24 |
24 |
22 |
19 |
28 |
42 |
34 |
32 |
22 |
14 |
32 |
30 |
26 |
21 |
20 |
26 |
18 |
13 |
20 |
18 |
26 |
26 |
22 |
14 |
20 |
20 |
7 |
20 |
18 |
27 |
17 |
16 |
21 |
21 |
23 |
28 |
31 |
12 |
9 |
15 |
19 |
16 |
21 |
11 |
16 |
13 |
14 |
17 |
33 |
19 |
19 |
29 |
19 |
19 |
27 |
19 |
22 |
13 |
22 |
22 |
11 |
15 |
7 |
18 |
12 |
10 |
19 |
16 |
20 |
12 |
11 |
15 |
11 |
20 |
21 |
11 |
11 |
22 |
0 |
0 |
0 |
0 |
0 |
Robo de maquinaria |
0 |
1 |
1 |
3 |
2 |
2 |
3 |
1 |
1 |
2 |
3 |
1 |
2 |
3 |
2 |
2 |
3 |
3 |
0 |
1 |
3 |
2 |
1 |
1 |
0 |
0 |
4 |
0 |
6 |
3 |
1 |
1 |
1 |
2 |
0 |
4 |
1 |
1 |
0 |
1 |
3 |
2 |
1 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
2 |
2 |
1 |
2 |
4 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
3 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
0 |
Robo de vehículo automotor |
313 |
275 |
274 |
273 |
326 |
340 |
320 |
364 |
389 |
350 |
311 |
337 |
326 |
305 |
378 |
347 |
372 |
415 |
408 |
504 |
458 |
478 |
440 |
449 |
423 |
412 |
457 |
411 |
500 |
516 |
513 |
516 |
496 |
510 |
494 |
490 |
508 |
398 |
468 |
474 |
535 |
525 |
556 |
632 |
480 |
527 |
468 |
594 |
472 |
442 |
441 |
473 |
426 |
399 |
402 |
372 |
355 |
357 |
376 |
407 |
347 |
338 |
328 |
272 |
223 |
236 |
338 |
299 |
280 |
333 |
318 |
319 |
298 |
276 |
310 |
273 |
300 |
285 |
323 |
0 |
0 |
0 |
0 |
0 |
Robo en transporte individual |
22 |
12 |
16 |
12 |
16 |
22 |
11 |
23 |
26 |
19 |
29 |
28 |
26 |
24 |
25 |
15 |
35 |
19 |
22 |
32 |
19 |
25 |
36 |
28 |
17 |
25 |
41 |
25 |
27 |
22 |
27 |
29 |
37 |
31 |
33 |
41 |
33 |
33 |
28 |
21 |
34 |
38 |
24 |
30 |
37 |
31 |
37 |
29 |
22 |
20 |
19 |
36 |
35 |
42 |
27 |
28 |
35 |
43 |
23 |
27 |
27 |
27 |
28 |
17 |
32 |
42 |
50 |
31 |
39 |
32 |
28 |
27 |
29 |
24 |
23 |
24 |
21 |
19 |
33 |
0 |
0 |
0 |
0 |
0 |
Robo en transporte público colectivo |
29 |
26 |
51 |
33 |
27 |
20 |
38 |
60 |
60 |
54 |
41 |
48 |
28 |
38 |
35 |
47 |
53 |
57 |
55 |
75 |
61 |
66 |
46 |
32 |
38 |
31 |
33 |
33 |
34 |
65 |
52 |
33 |
24 |
16 |
17 |
24 |
15 |
12 |
10 |
2 |
7 |
6 |
5 |
7 |
5 |
5 |
9 |
9 |
16 |
7 |
4 |
13 |
12 |
16 |
13 |
21 |
24 |
47 |
51 |
27 |
30 |
42 |
21 |
28 |
37 |
34 |
35 |
22 |
33 |
19 |
24 |
15 |
15 |
26 |
34 |
41 |
29 |
24 |
31 |
0 |
0 |
0 |
0 |
0 |
Robo en transporte público individual |
6 |
3 |
7 |
6 |
3 |
7 |
5 |
2 |
4 |
5 |
2 |
5 |
1 |
4 |
5 |
4 |
1 |
6 |
9 |
7 |
6 |
6 |
0 |
6 |
7 |
5 |
12 |
10 |
8 |
12 |
14 |
12 |
10 |
5 |
5 |
2 |
7 |
11 |
8 |
5 |
12 |
8 |
8 |
6 |
11 |
6 |
6 |
6 |
8 |
14 |
15 |
8 |
6 |
6 |
12 |
8 |
17 |
8 |
13 |
20 |
11 |
10 |
21 |
14 |
11 |
9 |
7 |
10 |
3 |
15 |
9 |
12 |
19 |
10 |
14 |
14 |
15 |
14 |
10 |
0 |
0 |
0 |
0 |
0 |
Secuestro |
1 |
0 |
2 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
0 |
3 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
2 |
0 |
3 |
3 |
2 |
0 |
1 |
0 |
2 |
0 |
3 |
0 |
1 |
1 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
2 |
3 |
1 |
1 |
1 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
2 |
2 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
2 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
Tráfico de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Trata de personas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
1 |
0 |
0 |
1 |
3 |
0 |
1 |
0 |
0 |
0 |
3 |
1 |
2 |
1 |
3 |
1 |
1 |
2 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Violación equiparada |
1 |
3 |
3 |
2 |
1 |
2 |
3 |
1 |
3 |
4 |
1 |
5 |
1 |
1 |
4 |
1 |
3 |
6 |
7 |
4 |
6 |
3 |
7 |
6 |
6 |
8 |
4 |
1 |
11 |
10 |
7 |
9 |
9 |
6 |
6 |
4 |
10 |
5 |
6 |
5 |
6 |
9 |
4 |
4 |
6 |
5 |
9 |
4 |
3 |
9 |
8 |
7 |
12 |
5 |
9 |
12 |
5 |
7 |
11 |
14 |
11 |
14 |
4 |
12 |
16 |
20 |
9 |
20 |
13 |
23 |
15 |
13 |
16 |
22 |
28 |
25 |
21 |
13 |
19 |
0 |
0 |
0 |
0 |
0 |
Violación simple |
17 |
11 |
30 |
25 |
31 |
22 |
29 |
28 |
24 |
28 |
28 |
21 |
16 |
20 |
21 |
24 |
34 |
22 |
25 |
25 |
37 |
24 |
28 |
9 |
12 |
21 |
31 |
23 |
36 |
31 |
25 |
27 |
23 |
24 |
24 |
19 |
18 |
25 |
18 |
18 |
22 |
32 |
23 |
23 |
20 |
22 |
27 |
14 |
20 |
24 |
29 |
33 |
44 |
47 |
49 |
33 |
28 |
44 |
43 |
51 |
47 |
39 |
47 |
30 |
25 |
26 |
33 |
30 |
29 |
29 |
33 |
27 |
32 |
37 |
35 |
37 |
29 |
42 |
38 |
0 |
0 |
0 |
0 |
0 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
2 |
0 |
1 |
0 |
1 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
0 |
2 |
3 |
4 |
4 |
4 |
7 |
8 |
13 |
10 |
0 |
0 |
0 |
0 |
0 |
Violencia familiar |
49 |
67 |
81 |
74 |
86 |
76 |
73 |
82 |
86 |
106 |
83 |
79 |
59 |
72 |
80 |
82 |
75 |
76 |
83 |
95 |
89 |
103 |
82 |
69 |
85 |
63 |
96 |
83 |
123 |
92 |
106 |
126 |
86 |
111 |
103 |
112 |
113 |
97 |
136 |
178 |
179 |
154 |
177 |
175 |
182 |
188 |
142 |
144 |
150 |
159 |
221 |
236 |
245 |
216 |
385 |
354 |
286 |
338 |
283 |
262 |
260 |
298 |
376 |
297 |
308 |
261 |
342 |
295 |
274 |
313 |
281 |
247 |
266 |
285 |
337 |
289 |
367 |
348 |
354 |
0 |
0 |
0 |
0 |
0 |
Delitos que aumentaron respecto del mismo mes en el año anterior(en tasa por cada 1000 habitantes)
kable(aumentoContraUnAno)
Abuso de confianza |
Abuso sexual |
Acoso sexual |
Amenazas |
Daño a la propiedad |
Extorsión |
Fraude |
Lesiones culposas |
Narcomenudeo |
Otros delitos contra el patrimonio |
Otros delitos contra la familia |
Otros delitos contra la sociedad |
Otros delitos del Fuero Común |
Otros delitos que atentan contra la libertad personal |
Otros delitos que atentan contra la vida y la integridad corporal |
Otros robos |
Robo de ganado |
Robo en transporte público individual |
Violación equiparada |
Violación simple |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
Violencia familiar |
Delitos en su máximo del año en Querétaro
#MAximo en el año
stop3<-stop1-(stop1 %% 12)+2
if(stop3>stop1){
stop3<-stop3-12
}else{stop3<-stop3}
soloEsteAno<-catalogoDelitos[,c(1,stop3:stop1)]
if(dim(soloEsteAno)[2]==2){
maxAno<-soloEsteAno[,2:ncol(soloEsteAno)]
}else{
maxAno<-apply(X = soloEsteAno[,2:ncol(soloEsteAno)],MARGIN = 1,FUN = max)
}
delitosEnmaximoAnual<-soloEsteAno$Delito[soloEsteAno[,ncol(soloEsteAno)]>=maxAno & soloEsteAno[ncol(soloEsteAno)]!=0]
kable(delitosEnmaximoAnual)
Abuso sexual |
Allanamiento de morada |
Extorsión |
Otros delitos contra la familia |
Otros delitos que atentan contra la libertad personal |
Otros delitos que atentan contra la vida y la integridad corporal |
Robo de ganado |
Robo de maquinaria |
Robo de vehículo automotor |
Robo en transporte individual |
Municipal
Municipios que aumentaron respecto del mismo mes del año anterior (Julio )
#Superior al mismo périodo del año anterior
catalogoMunicipios<-as.data.frame(sort(unique(delitosQRO2020$Cve..Municipio)))
losMeses2020<-sort(unique(delitosQRO2020$periodo))
for (i in 1:length(losMeses2020)){
a<-subset(delitosQRO2020, delitosQRO2020$periodo==losMeses2020[i])
b<-as.data.frame(aggregate(a$value~a$Cve..Municipio,a,sum))[2]
catalogoMunicipios<-cbind(catalogoMunicipios,b)
}
names(catalogoMunicipios)<-c("cveMun", losMeses2020)
catalogoMunicipios<-catalogoMunicipios[1:18,]
pop2020Qro<-subset(pop2020,pop2020$CLAVE_ENT==22)
popQro20<- aggregate(pop2020Qro$POB~ pop2020Qro$CLAVE,pop2020Qro,sum)
pop2019Qro<-subset(pop,pop$CLAVE_ENT==22 & pop$ANO==2019)
popQro19<- aggregate(pop2019Qro$POB~ pop2019Qro$CLAVE,pop2019Qro,sum)
comparaAnoAnteriorMUN<-catalogoMunicipios[,c(1,stop2,stop1)]
comparaAnoAnteriorMUNTasa<-comparaAnoAnteriorMUN
comparaAnoAnteriorMUNTasa[2]<-round(comparaAnoAnteriorMUNTasa[2]/popQro19[2]*1000,3)
comparaAnoAnteriorMUNTasa[3]<-round(comparaAnoAnteriorMUNTasa[3]/popQro20[2]*1000,3)
names(comparaAnoAnteriorMUNTasa)<-c("Delito", "Tasa 2019", "Tasa 2020")
comparaAnoAnteriorMUNTasa$cambio<-NA
comparaAnoAnteriorMUNTasa$cambio<-round((comparaAnoAnteriorMUNTasa[3]-comparaAnoAnteriorMUNTasa[2])/comparaAnoAnteriorMUNTasa[2],2)
misMuns<-catalogoMunicipios[,1]
catalogoMunicipios$nomMun<-NA
nomMun<-c()
for (i in 1:length(misMuns)) {
catalogoMunicipios$nomMun[i]<-unique(delitosQRO2020$Municipio[delitosQRO2020$Cve..Municipio==misMuns[i]])
nomMun[i]<-unique(delitosQRO2020$Municipio[delitosQRO2020$Cve..Municipio==misMuns[i]])
}
aumento<-comparaAnoAnteriorMUNTasa$Delito[comparaAnoAnteriorMUNTasa$cambio>0 & !is.na(comparaAnoAnteriorMUNTasa$cambio)]
aumentoContraUnAnoMUNICIPAL<-NA
for (i in 1:length(aumento)) {
aumentoContraUnAnoMUNICIPAL[i]<-catalogoMunicipios$nomMun[catalogoMunicipios$cveMun==aumento[i]]
}
names(aumentoContraUnAnoMUNICIPAL)<-c("Municipios")
kable(aumentoContraUnAnoMUNICIPAL,caption = "Municipios cuya tasa por cada 1000 habitantes aumentó respecto del mismo mes del año anterior")
Municipios cuya tasa por cada 1000 habitantes aumentó respecto del mismo mes del año anterior
Pinal de Amoles |
Cadereyta de Montes |
Colón |
Ezequiel Montes |
Jalpan de Serra |
Querétaro |
San Joaquín |
Tolimán |
Cambio respecto del mes anterior por municipio
stop4<-stop1-1
municipio<-as.data.frame(cbind(catalogoMunicipios$cveMun, catalogoMunicipios$nomMun,catalogoMunicipios[,stop4],catalogoMunicipios[,stop1]))
municipio$tasa<-NA
municipio$tasa<-round((as.numeric(municipio[,4])-as.numeric(municipio[,3]) )/as.numeric(municipio[,3])*100,2)
names(municipio)<-c("cveMun","Municipio",anterior, esteMes,"Tasa de cambio respecto del mes anterior (%)")
kable(municipio[2:5])
Amealco de Bonfil |
87 |
62 |
-28.74 |
Pinal de Amoles |
20 |
22 |
10.00 |
Arroyo Seco |
15 |
7 |
-53.33 |
Cadereyta de Montes |
52 |
91 |
75.00 |
Colón |
74 |
74 |
0.00 |
Corregidora |
277 |
279 |
0.72 |
Ezequiel Montes |
46 |
64 |
39.13 |
Huimilpan |
39 |
41 |
5.13 |
Jalpan de Serra |
51 |
44 |
-13.73 |
Landa de Matamoros |
11 |
8 |
-27.27 |
El Marqués |
352 |
265 |
-24.72 |
Pedro Escobedo |
93 |
104 |
11.83 |
Peñamiller |
13 |
9 |
-30.77 |
Querétaro |
2784 |
2869 |
3.05 |
San Joaquín |
12 |
10 |
-16.67 |
San Juan del Río |
550 |
576 |
4.73 |
Tequisquiapan |
86 |
92 |
6.98 |
Tolimán |
39 |
48 |
23.08 |
Municipios en Máximo Anual
soloEsteAnoMUN<-catalogoMunicipios[,c(1,stop3:stop1)]
if(dim(soloEsteAnoMUN)[2]==2){maxAnoMun<-soloEsteAnoMUN[,2:ncol(soloEsteAnoMUN)]}else{
maxAnoMun<-apply(X = soloEsteAnoMUN[,2:ncol(soloEsteAnoMUN)],MARGIN = 1,FUN = max)}
municipiosEnmaximoAnual<-soloEsteAnoMUN
municipiosEnmaximoAnual<-soloEsteAnoMUN$cveMun[soloEsteAnoMUN[,ncol(soloEsteAnoMUN)]>=maxAnoMun & soloEsteAnoMUN[ncol(soloEsteAnoMUN)]!=0]
munmax<-c()
for (i in 1:length(municipiosEnmaximoAnual)) {
munmax[i]<-catalogoMunicipios$nomMun[catalogoMunicipios$cveMun==municipiosEnmaximoAnual[i]]
}
if(length(munmax)!=0|!is.null(length(munmax))){
munmax<-data.frame(munmax)
names(munmax)<-c("Municipios en Máximo Anual")
kable(munmax)
}
Cadereyta de Montes |
Tolimán |
Municipios en su nivel máximo (absoluto) registrado
maximoAbsolutoMUNICIPAL<-apply(X = catalogoMunicipios[,2:stop1], MARGIN = 1,max)
estePeriodoMunicipal<-catalogoMunicipios[,stop1]
municipiosEnmaximoAbsoluto<-catalogoMunicipios$nomMun[estePeriodoMunicipal!=0 & estePeriodoMunicipal>=maximoAbsolutoMUNICIPAL]
if(!is.null(dim(municipiosEnmaximoAbsoluto))){
names(municipiosEnmaximoAbsoluto)<-c("Municipios en máximo histórico (absoluto) registrado")
}
kable(municipiosEnmaximoAbsoluto)
Serie de tiempo municipal (Absolutos)
catalogoMunicipios2<-catalogoMunicipios
names(catalogoMunicipios2[2:73])<-paste0(substr(names(catalogoMunicipios2[2:73]),5,6),"-",substr(names(catalogoMunicipios2[2:73]),1,4))
catalogoMunicipios2<-cbind(catalogoMunicipios2[,1],catalogoMunicipios2[,74],catalogoMunicipios2[,2:stop1])
names(catalogoMunicipios2)[c(1,2)]<-c("Clave","Municipio")
kable(catalogoMunicipios2)
22001 |
70 |
45 |
47 |
52 |
40 |
52 |
51 |
50 |
59 |
42 |
52 |
55 |
70 |
48 |
51 |
53 |
52 |
71 |
50 |
59 |
49 |
43 |
44 |
40 |
40 |
51 |
36 |
45 |
43 |
43 |
81 |
48 |
42 |
48 |
40 |
48 |
37 |
54 |
46 |
43 |
34 |
38 |
80 |
90 |
80 |
53 |
70 |
73 |
70 |
92 |
89 |
92 |
101 |
101 |
105 |
80 |
74 |
65 |
87 |
87 |
88 |
76 |
84 |
93 |
75 |
53 |
74 |
67 |
74 |
76 |
75 |
65 |
63 |
70 |
62 |
91 |
96 |
91 |
87 |
62 |
22002 |
21 |
14 |
3 |
10 |
10 |
11 |
12 |
11 |
6 |
10 |
11 |
3 |
11 |
10 |
17 |
9 |
14 |
10 |
9 |
5 |
10 |
8 |
17 |
4 |
13 |
8 |
7 |
17 |
13 |
14 |
11 |
13 |
12 |
11 |
21 |
13 |
6 |
9 |
11 |
9 |
18 |
26 |
28 |
28 |
15 |
18 |
15 |
12 |
7 |
9 |
21 |
16 |
25 |
15 |
21 |
21 |
21 |
15 |
18 |
18 |
19 |
20 |
20 |
19 |
19 |
28 |
21 |
12 |
20 |
15 |
11 |
18 |
14 |
21 |
20 |
19 |
24 |
26 |
20 |
22 |
22003 |
5 |
5 |
4 |
5 |
4 |
4 |
5 |
7 |
8 |
5 |
4 |
5 |
3 |
2 |
2 |
4 |
3 |
7 |
6 |
6 |
2 |
5 |
2 |
3 |
9 |
6 |
6 |
3 |
5 |
4 |
2 |
9 |
7 |
2 |
3 |
5 |
3 |
3 |
6 |
6 |
8 |
12 |
8 |
12 |
5 |
2 |
8 |
3 |
9 |
17 |
7 |
7 |
9 |
7 |
9 |
12 |
8 |
5 |
7 |
20 |
10 |
11 |
4 |
16 |
11 |
10 |
8 |
10 |
10 |
7 |
8 |
4 |
0 |
5 |
4 |
7 |
9 |
6 |
15 |
7 |
22004 |
75 |
41 |
37 |
37 |
37 |
38 |
47 |
40 |
36 |
50 |
29 |
37 |
40 |
47 |
48 |
47 |
58 |
52 |
41 |
51 |
45 |
42 |
50 |
37 |
38 |
43 |
44 |
46 |
48 |
51 |
59 |
47 |
48 |
49 |
49 |
40 |
27 |
38 |
50 |
46 |
59 |
48 |
74 |
84 |
60 |
109 |
75 |
53 |
64 |
58 |
88 |
87 |
60 |
66 |
62 |
75 |
80 |
71 |
60 |
74 |
72 |
52 |
69 |
61 |
65 |
64 |
59 |
72 |
54 |
62 |
64 |
72 |
73 |
75 |
71 |
74 |
76 |
86 |
52 |
91 |
22005 |
55 |
40 |
30 |
46 |
42 |
40 |
56 |
45 |
40 |
48 |
38 |
47 |
36 |
49 |
53 |
50 |
49 |
57 |
63 |
56 |
60 |
71 |
66 |
55 |
52 |
45 |
60 |
53 |
50 |
57 |
67 |
48 |
48 |
36 |
54 |
55 |
56 |
47 |
53 |
49 |
62 |
54 |
61 |
80 |
53 |
67 |
77 |
54 |
65 |
62 |
59 |
71 |
76 |
67 |
70 |
75 |
82 |
86 |
80 |
59 |
71 |
72 |
62 |
81 |
69 |
64 |
82 |
61 |
66 |
91 |
74 |
69 |
70 |
55 |
72 |
93 |
90 |
67 |
74 |
74 |
22006 |
239 |
176 |
166 |
186 |
179 |
200 |
218 |
189 |
183 |
189 |
210 |
211 |
182 |
185 |
192 |
183 |
213 |
226 |
297 |
338 |
359 |
302 |
304 |
308 |
306 |
321 |
311 |
368 |
283 |
361 |
304 |
343 |
306 |
342 |
352 |
298 |
330 |
345 |
329 |
397 |
362 |
379 |
387 |
390 |
373 |
349 |
365 |
329 |
373 |
353 |
333 |
396 |
374 |
399 |
379 |
382 |
364 |
346 |
394 |
377 |
333 |
400 |
358 |
349 |
260 |
253 |
254 |
315 |
302 |
317 |
342 |
302 |
285 |
239 |
251 |
263 |
303 |
312 |
277 |
279 |
22007 |
62 |
30 |
38 |
25 |
23 |
22 |
42 |
37 |
31 |
40 |
47 |
43 |
43 |
26 |
35 |
68 |
55 |
57 |
40 |
41 |
48 |
48 |
47 |
37 |
39 |
28 |
22 |
36 |
26 |
32 |
38 |
47 |
38 |
39 |
43 |
48 |
30 |
51 |
52 |
42 |
51 |
46 |
58 |
64 |
75 |
63 |
46 |
59 |
54 |
54 |
46 |
90 |
59 |
61 |
62 |
54 |
60 |
63 |
55 |
55 |
46 |
62 |
55 |
57 |
35 |
63 |
56 |
43 |
44 |
37 |
51 |
68 |
53 |
62 |
55 |
63 |
54 |
68 |
46 |
64 |
22008 |
31 |
36 |
33 |
42 |
28 |
25 |
39 |
30 |
33 |
32 |
26 |
52 |
35 |
29 |
36 |
42 |
21 |
33 |
28 |
34 |
31 |
28 |
29 |
40 |
22 |
22 |
21 |
23 |
24 |
37 |
29 |
26 |
41 |
32 |
35 |
20 |
35 |
29 |
37 |
33 |
28 |
28 |
34 |
49 |
49 |
44 |
46 |
55 |
38 |
48 |
44 |
55 |
54 |
53 |
43 |
59 |
50 |
58 |
61 |
35 |
49 |
57 |
61 |
65 |
38 |
51 |
56 |
68 |
60 |
36 |
45 |
43 |
51 |
31 |
38 |
45 |
42 |
51 |
39 |
41 |
22009 |
44 |
18 |
32 |
35 |
15 |
27 |
21 |
16 |
23 |
13 |
24 |
16 |
18 |
25 |
16 |
32 |
29 |
25 |
24 |
32 |
27 |
20 |
24 |
15 |
15 |
22 |
25 |
21 |
23 |
21 |
24 |
23 |
18 |
14 |
38 |
32 |
20 |
29 |
27 |
30 |
34 |
41 |
31 |
49 |
36 |
38 |
42 |
32 |
31 |
50 |
47 |
42 |
40 |
57 |
29 |
36 |
36 |
23 |
36 |
31 |
21 |
39 |
30 |
32 |
38 |
28 |
36 |
36 |
40 |
49 |
40 |
37 |
45 |
44 |
26 |
50 |
47 |
55 |
51 |
44 |
22010 |
5 |
1 |
4 |
3 |
2 |
5 |
4 |
6 |
2 |
6 |
9 |
8 |
5 |
3 |
1 |
1 |
3 |
4 |
9 |
6 |
8 |
6 |
2 |
6 |
4 |
6 |
5 |
5 |
6 |
9 |
4 |
6 |
8 |
4 |
4 |
6 |
7 |
10 |
3 |
8 |
6 |
7 |
11 |
10 |
9 |
5 |
10 |
15 |
10 |
7 |
6 |
7 |
9 |
5 |
9 |
10 |
12 |
9 |
11 |
11 |
10 |
13 |
10 |
18 |
19 |
6 |
13 |
14 |
13 |
13 |
10 |
19 |
5 |
5 |
8 |
15 |
11 |
13 |
11 |
8 |
22011 |
289 |
133 |
161 |
158 |
184 |
158 |
171 |
166 |
168 |
197 |
169 |
158 |
173 |
152 |
151 |
148 |
170 |
189 |
222 |
279 |
322 |
287 |
289 |
276 |
266 |
262 |
279 |
294 |
313 |
338 |
325 |
328 |
325 |
285 |
291 |
268 |
307 |
365 |
308 |
334 |
352 |
390 |
376 |
378 |
381 |
337 |
393 |
347 |
372 |
441 |
457 |
437 |
474 |
488 |
392 |
473 |
387 |
380 |
417 |
379 |
408 |
377 |
395 |
404 |
321 |
291 |
348 |
403 |
355 |
363 |
392 |
311 |
346 |
289 |
260 |
307 |
324 |
317 |
352 |
265 |
22012 |
69 |
44 |
32 |
54 |
48 |
49 |
59 |
49 |
57 |
32 |
45 |
45 |
44 |
47 |
50 |
68 |
57 |
70 |
46 |
52 |
66 |
55 |
37 |
48 |
49 |
59 |
68 |
101 |
83 |
101 |
113 |
107 |
123 |
106 |
131 |
87 |
117 |
112 |
102 |
110 |
116 |
135 |
112 |
123 |
117 |
106 |
129 |
111 |
90 |
151 |
111 |
103 |
130 |
140 |
113 |
131 |
114 |
115 |
105 |
91 |
80 |
80 |
76 |
115 |
66 |
90 |
84 |
101 |
107 |
75 |
70 |
87 |
65 |
69 |
82 |
84 |
82 |
113 |
93 |
104 |
22013 |
12 |
10 |
4 |
3 |
4 |
9 |
5 |
9 |
3 |
6 |
6 |
8 |
7 |
8 |
5 |
4 |
7 |
13 |
11 |
7 |
7 |
17 |
6 |
11 |
5 |
5 |
4 |
6 |
5 |
10 |
14 |
3 |
9 |
6 |
5 |
6 |
10 |
11 |
8 |
10 |
15 |
12 |
14 |
9 |
15 |
15 |
17 |
14 |
11 |
13 |
7 |
14 |
11 |
10 |
14 |
11 |
15 |
8 |
19 |
4 |
17 |
7 |
20 |
14 |
13 |
6 |
37 |
15 |
20 |
16 |
17 |
11 |
10 |
12 |
11 |
15 |
13 |
11 |
13 |
9 |
22014 |
2450 |
1556 |
1414 |
1611 |
1557 |
1605 |
1541 |
1601 |
1713 |
1747 |
1830 |
1762 |
1704 |
1557 |
1414 |
1712 |
1686 |
1873 |
2461 |
2647 |
2936 |
2769 |
2983 |
2550 |
2561 |
2489 |
2447 |
2772 |
2517 |
2992 |
2962 |
2701 |
3073 |
2829 |
3031 |
2941 |
2833 |
2684 |
2500 |
2873 |
2791 |
3003 |
2802 |
2975 |
3026 |
2859 |
3126 |
2648 |
2702 |
2816 |
2748 |
2915 |
2976 |
3184 |
2959 |
3101 |
2900 |
2671 |
2971 |
2717 |
2755 |
2620 |
2676 |
2748 |
2061 |
2006 |
2053 |
2478 |
2564 |
2659 |
2828 |
2576 |
2513 |
2450 |
2459 |
2962 |
2793 |
2799 |
2784 |
2869 |
22015 |
5 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
3 |
3 |
1 |
3 |
3 |
3 |
4 |
3 |
3 |
4 |
4 |
2 |
5 |
7 |
4 |
5 |
6 |
3 |
4 |
3 |
4 |
8 |
3 |
2 |
5 |
3 |
3 |
5 |
2 |
1 |
0 |
4 |
8 |
4 |
5 |
5 |
8 |
4 |
6 |
5 |
10 |
8 |
6 |
4 |
7 |
7 |
3 |
13 |
9 |
6 |
10 |
7 |
7 |
8 |
6 |
6 |
7 |
6 |
7 |
7 |
6 |
11 |
6 |
5 |
9 |
5 |
12 |
8 |
11 |
5 |
12 |
10 |
22016 |
525 |
371 |
314 |
404 |
425 |
440 |
410 |
366 |
312 |
354 |
400 |
406 |
364 |
339 |
380 |
400 |
437 |
430 |
392 |
398 |
356 |
392 |
371 |
403 |
479 |
518 |
478 |
569 |
457 |
543 |
558 |
514 |
560 |
537 |
617 |
574 |
535 |
594 |
604 |
695 |
677 |
714 |
650 |
631 |
605 |
594 |
664 |
589 |
611 |
624 |
561 |
684 |
702 |
788 |
664 |
736 |
687 |
631 |
660 |
579 |
579 |
616 |
611 |
622 |
490 |
442 |
478 |
644 |
631 |
592 |
589 |
502 |
528 |
525 |
520 |
665 |
554 |
559 |
550 |
576 |
22017 |
69 |
47 |
40 |
32 |
34 |
43 |
37 |
52 |
46 |
53 |
47 |
54 |
57 |
35 |
35 |
55 |
52 |
42 |
54 |
52 |
50 |
58 |
41 |
42 |
49 |
49 |
57 |
50 |
50 |
119 |
98 |
109 |
93 |
107 |
100 |
91 |
86 |
123 |
81 |
103 |
127 |
132 |
102 |
100 |
103 |
94 |
109 |
84 |
100 |
73 |
90 |
103 |
95 |
94 |
94 |
114 |
134 |
84 |
108 |
87 |
101 |
110 |
117 |
111 |
100 |
79 |
103 |
99 |
103 |
89 |
81 |
65 |
69 |
69 |
66 |
74 |
98 |
111 |
86 |
92 |
22018 |
18 |
11 |
10 |
24 |
18 |
11 |
21 |
17 |
12 |
13 |
18 |
16 |
11 |
18 |
14 |
17 |
20 |
21 |
21 |
15 |
16 |
13 |
16 |
12 |
18 |
13 |
9 |
16 |
17 |
24 |
14 |
11 |
11 |
15 |
15 |
12 |
17 |
8 |
10 |
6 |
18 |
19 |
43 |
44 |
41 |
41 |
42 |
39 |
38 |
33 |
36 |
53 |
36 |
19 |
43 |
56 |
46 |
29 |
16 |
29 |
23 |
23 |
22 |
18 |
27 |
35 |
27 |
16 |
22 |
11 |
22 |
15 |
24 |
18 |
18 |
26 |
33 |
38 |
39 |
48 |
Top 5 delitos por municipio
En lo que va del año
mm<-unique(delitosQRO2020$Cve..Municipio)
mm<-mm[1:18]
top5<-as.data.frame(c("Primero","Segundo","Tercero","Cuarto","Quinto"))
for (i in 1:length(mm)){
mimu<-subset(delitosQRO2020,delitosQRO2020$Cve..Municipio==mm[i] & delitosQRO2020$Ano==losAnos[length(losAnos)])
a<-aggregate(mimu$value~mimu$Subtipo.de.delito,data = mimu, FUN = sum)
a<-as.data.frame(a)
names(a)<-c(nomMun[i],"Carpetas")
a<-a[order(a$Carpetas, decreasing = TRUE),]
top5<-cbind(top5,a[1:5,])
}
names(top5)[1]<-c("Posicion")
kable(top5,caption="Top 5 delitos en carpetas de investigación por municipio en lo que va del año ")
Top 5 delitos en carpetas de investigación por municipio en lo que va del año
6 |
Primero |
Amenazas |
89 |
Violencia familiar |
33 |
Violencia familiar |
12 |
Violencia familiar |
86 |
Otros robos |
102 |
Otros robos |
387 |
Otros robos |
67 |
Otros robos |
37 |
Lesiones dolosas |
48 |
Violencia familiar |
13 |
Otros robos |
461 |
Otros robos |
115 |
Amenazas |
14 |
Otros robos |
3898 |
Otros robos |
11 |
Otros robos |
699 |
Otros robos |
112 |
Violencia familiar |
52 |
34 |
Segundo |
Otros robos |
81 |
Lesiones dolosas |
30 |
Amenazas |
10 |
Lesiones dolosas |
66 |
Violencia familiar |
63 |
Amenazas |
183 |
Violencia familiar |
48 |
Amenazas |
32 |
Violencia familiar |
48 |
Amenazas |
12 |
Lesiones dolosas |
244 |
Lesiones dolosas |
88 |
Violencia familiar |
12 |
Otros delitos del Fuero Común |
1659 |
Violencia familiar |
10 |
Amenazas |
487 |
Amenazas |
74 |
Lesiones dolosas |
34 |
55 |
Tercero |
Violencia familiar |
77 |
Amenazas |
18 |
Otros robos |
8 |
Otros robos |
66 |
Lesiones dolosas |
62 |
Lesiones dolosas |
175 |
Lesiones dolosas |
38 |
Lesiones dolosas |
32 |
Otros robos |
44 |
Lesiones dolosas |
10 |
Robo de vehículo automotor |
164 |
Amenazas |
67 |
Lesiones dolosas |
9 |
Robo de vehículo automotor |
1454 |
Amenazas |
9 |
Lesiones dolosas |
451 |
Lesiones dolosas |
73 |
Amenazas |
28 |
25 |
Cuarto |
Lesiones dolosas |
53 |
Otros delitos del Fuero Común |
12 |
Lesiones dolosas |
5 |
Amenazas |
54 |
Amenazas |
36 |
Fraude |
142 |
Amenazas |
29 |
Violencia familiar |
29 |
Amenazas |
36 |
Robo a casa habitación |
4 |
Violencia familiar |
159 |
Violencia familiar |
53 |
Otros delitos del Fuero Común |
9 |
Lesiones dolosas |
1439 |
Abuso sexual |
3 |
Violencia familiar |
281 |
Fraude |
35 |
Daño a la propiedad |
14 |
30 |
Quinto |
Otros delitos del Fuero Común |
37 |
Otros robos |
11 |
Otros delitos del Fuero Común |
4 |
Otros delitos del Fuero Común |
44 |
Otros delitos del Fuero Común |
32 |
Otros delitos del Fuero Común |
136 |
Robo de vehículo automotor |
27 |
Robo a casa habitación |
22 |
Otros delitos del Fuero Común |
19 |
Fraude |
3 |
Amenazas |
151 |
Robo a casa habitación |
35 |
Fraude |
7 |
Fraude |
1319 |
Lesiones culposas |
3 |
Otros delitos del Fuero Común |
261 |
Otros delitos del Fuero Común |
35 |
Otros delitos del Fuero Común |
13 |
Top 5 municipal durante Julio
top5mes<-as.data.frame(c("Primero","Segundo","Tercero","Cuarto","Quinto"))
for (i in 1:length(mm)) {
mimume<-subset(delitosQRO2020,delitosQRO2020$Cve..Municipio==mm[i] & delitosQRO2020$Ano==2020 & delitosQRO2020$meses==esteMes)
a<-aggregate(mimume$value~mimume$Subtipo.de.delito,data = mimume, FUN = sum)
a<-as.data.frame(a)
names(a)<-c(nomMun[i],"Carpetas")
a<-a[order(a$Carpetas, decreasing = TRUE),]
top5mes<-cbind(top5mes,a[1:5,])
}
names(top5mes)[1]<-c("Posicion")
kable(top5mes,caption=paste0("Top 5 delitos en carpetas de investigación por municipio en ",esteMes))
Top 5 delitos en carpetas de investigación por municipio en Julio
25 |
Primero |
Lesiones dolosas |
13 |
Lesiones dolosas |
6 |
Abuso sexual |
2 |
Violencia familiar |
13 |
Otros robos |
13 |
Otros robos |
47 |
Otros robos |
11 |
Violencia familiar |
9 |
Violencia familiar |
9 |
Violencia familiar |
5 |
Otros robos |
68 |
Lesiones dolosas |
17 |
Violencia familiar |
3 |
Otros robos |
476 |
Robo a negocio |
2 |
Otros robos |
108 |
Otros robos |
14 |
Violencia familiar |
7 |
34 |
Segundo |
Otros robos |
10 |
Otros robos |
2 |
Amenazas |
2 |
Amenazas |
9 |
Lesiones dolosas |
8 |
Lesiones dolosas |
33 |
Violencia familiar |
8 |
Daño a la propiedad |
8 |
Amenazas |
4 |
Despojo |
2 |
Lesiones dolosas |
62 |
Otros robos |
15 |
Abuso sexual |
2 |
Robo de vehículo automotor |
238 |
Violencia familiar |
2 |
Violencia familiar |
71 |
Amenazas |
12 |
Lesiones dolosas |
3 |
55 |
Tercero |
Violencia familiar |
9 |
Violencia familiar |
2 |
Violencia familiar |
2 |
Lesiones dolosas |
9 |
Otros delitos del Fuero Común |
8 |
Amenazas |
27 |
Amenazas |
3 |
Amenazas |
7 |
Lesiones dolosas |
4 |
Lesiones dolosas |
2 |
Violencia familiar |
34 |
Violencia familiar |
13 |
Daño a la propiedad |
2 |
Lesiones dolosas |
234 |
Amenazas |
1 |
Amenazas |
69 |
Robo a casa habitación |
11 |
Abuso sexual |
1 |
6 |
Cuarto |
Amenazas |
7 |
Amenazas |
1 |
Lesiones dolosas |
1 |
Otros robos |
8 |
Violencia familiar |
8 |
Fraude |
26 |
Fraude |
3 |
Otros delitos del Fuero Común |
7 |
Despojo |
3 |
Amenazas |
1 |
Otros delitos del Fuero Común |
28 |
Amenazas |
8 |
Otros robos |
2 |
Robo a negocio |
196 |
Lesiones dolosas |
1 |
Lesiones dolosas |
68 |
Lesiones dolosas |
10 |
Acoso sexual |
1 |
30 |
Quinto |
Otros delitos del Fuero Común |
5 |
Lesiones culposas |
1 |
Otros delitos del Fuero Común |
1 |
Robo a casa habitación |
5 |
Amenazas |
4 |
Robo de vehículo automotor |
24 |
Lesiones dolosas |
3 |
Lesiones dolosas |
6 |
Otros robos |
3 |
Fraude |
1 |
Amenazas |
25 |
Despojo |
6 |
Despojo |
1 |
Otros delitos del Fuero Común |
173 |
Otros robos |
1 |
Otros delitos del Fuero Común |
50 |
Fraude |
7 |
Amenazas |
1 |
Robo y robo con violencia
delitos3<-delitos2[delitos2$Modalidad=="Con violencia" | delitos2$Modalidad=="Sin violencia" | delitos2$Subtipo.de.delito=="Robo de maquinaria" | delitos2$Subtipo.de.delito== "Robo de vehículo automotor" ,]
cualArreglar<-unique(delitos3$Modalidad)
cualArreglar<-cualArreglar[3:length(cualArreglar)]
for (i in 1:length(cualArreglar)) {
x<-i%%2
if(x==0){
delitos3$Subtipo.de.delito[delitos3$Modalidad==cualArreglar[i]]<-sub("Sin violencia","", cualArreglar[i])
delitos3$Modalidad[delitos3$Modalidad==cualArreglar[i]]<-"Sin violencia"
}else{
delitos3$Subtipo.de.delito[delitos3$Modalidad==cualArreglar[i]]<-sub("Con violencia","", cualArreglar[i])
delitos3$Modalidad[delitos3$Modalidad==cualArreglar[i]]<-"Con violencia"
}
}
# esto es casi copia del primer modulo, delitos por estado
RobosPorEstadoAnual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos3,delitos3$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosPorEstadoAnual<-cbind(RobosPorEstadoAnual,mitab)
}
names(RobosPorEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
Robos por estado y año
kable(RobosPorEstadoAnual)
1 |
10719 |
11412 |
15205 |
15697 |
12988 |
10417 |
5815 |
2 |
48838 |
48708 |
51385 |
40705 |
37180 |
27993 |
17458 |
3 |
9113 |
11365 |
10797 |
10350 |
8625 |
5690 |
2779 |
4 |
858 |
1091 |
883 |
981 |
1063 |
925 |
578 |
5 |
13140 |
10628 |
10438 |
8866 |
6654 |
6357 |
4022 |
6 |
2986 |
7086 |
8336 |
8163 |
7547 |
6415 |
4000 |
7 |
7930 |
8996 |
9160 |
9336 |
6410 |
3431 |
1719 |
8 |
16139 |
13475 |
17366 |
16509 |
16186 |
12914 |
7998 |
9 |
77435 |
81555 |
102714 |
123514 |
109431 |
77962 |
46016 |
10 |
10363 |
9835 |
11158 |
10629 |
10060 |
8712 |
5186 |
11 |
31655 |
35063 |
39809 |
42982 |
42732 |
34398 |
17702 |
12 |
12600 |
11613 |
10286 |
8383 |
7564 |
5917 |
3476 |
13 |
9866 |
11403 |
14400 |
14641 |
14873 |
11588 |
6041 |
14 |
27501 |
58804 |
88606 |
85035 |
76242 |
53455 |
29828 |
15 |
168652 |
149203 |
161155 |
167529 |
157281 |
136258 |
79393 |
16 |
16001 |
16313 |
18262 |
18611 |
17239 |
13940 |
7277 |
17 |
20564 |
19641 |
17686 |
17313 |
16301 |
15100 |
8592 |
18 |
1468 |
795 |
584 |
1172 |
735 |
745 |
486 |
19 |
14534 |
19000 |
16877 |
15793 |
14235 |
16091 |
7746 |
20 |
1737 |
9919 |
10887 |
12541 |
13153 |
10344 |
5642 |
21 |
23166 |
21691 |
29621 |
32477 |
35887 |
25548 |
16260 |
22 |
17633 |
22119 |
27020 |
27836 |
26816 |
22760 |
12601 |
23 |
12652 |
7102 |
11441 |
14318 |
20050 |
15510 |
8955 |
24 |
6033 |
7854 |
11850 |
13991 |
16495 |
12774 |
7334 |
25 |
10115 |
8628 |
9885 |
8608 |
7155 |
6660 |
4358 |
26 |
9997 |
16021 |
10456 |
7470 |
7291 |
9250 |
4896 |
27 |
18091 |
23178 |
25469 |
25059 |
20167 |
12961 |
6941 |
28 |
19273 |
15541 |
16175 |
14098 |
13019 |
8641 |
5002 |
29 |
4736 |
4703 |
5360 |
4296 |
2822 |
2615 |
1700 |
30 |
17841 |
16902 |
28262 |
23595 |
29887 |
22429 |
13564 |
31 |
3625 |
2664 |
2218 |
2371 |
2625 |
583 |
189 |
32 |
7386 |
7047 |
7348 |
7733 |
7378 |
5892 |
3447 |
Robos con violencia por estado y año
RobosConViolenciaPorEstadoAnual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos3,delitos3$Ano==losAnos[i] & delitos3$Modalidad=="Con violencia")
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosConViolenciaPorEstadoAnual<-cbind(RobosConViolenciaPorEstadoAnual,mitab)
}
names(RobosConViolenciaPorEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
kable(RobosConViolenciaPorEstadoAnual)
1 |
838 |
883 |
1122 |
1245 |
1198 |
976 |
510 |
2 |
9250 |
10360 |
12544 |
9908 |
10497 |
8316 |
5707 |
3 |
698 |
827 |
1037 |
924 |
889 |
624 |
232 |
4 |
185 |
137 |
150 |
226 |
210 |
249 |
165 |
5 |
2221 |
1466 |
1471 |
1124 |
511 |
580 |
248 |
6 |
418 |
1123 |
1136 |
1015 |
447 |
131 |
67 |
7 |
5767 |
5701 |
5268 |
5528 |
3883 |
1519 |
548 |
8 |
2241 |
1592 |
1949 |
1562 |
1626 |
1501 |
801 |
9 |
23710 |
21483 |
28456 |
42686 |
37550 |
25200 |
13169 |
10 |
1890 |
1180 |
1001 |
1016 |
694 |
682 |
459 |
11 |
6549 |
8497 |
10257 |
12737 |
14903 |
13097 |
5672 |
12 |
3383 |
4089 |
5530 |
4733 |
3655 |
2795 |
1477 |
13 |
1390 |
2126 |
3634 |
4609 |
4830 |
3749 |
2301 |
14 |
6376 |
7494 |
30525 |
28849 |
27471 |
21329 |
10922 |
15 |
88064 |
58336 |
93723 |
97255 |
86549 |
75006 |
42904 |
16 |
4207 |
5367 |
6884 |
7379 |
6971 |
5878 |
2982 |
17 |
6736 |
5769 |
4967 |
4083 |
3510 |
4150 |
2434 |
18 |
369 |
167 |
121 |
191 |
163 |
143 |
90 |
19 |
4148 |
5935 |
4398 |
3752 |
3072 |
2680 |
1411 |
20 |
814 |
2758 |
3782 |
4683 |
4170 |
3587 |
2023 |
21 |
9133 |
9249 |
14862 |
18552 |
19754 |
12691 |
7235 |
22 |
3455 |
2927 |
2682 |
2718 |
2953 |
3117 |
1347 |
23 |
1721 |
1419 |
2614 |
4297 |
5910 |
4405 |
1833 |
24 |
1288 |
1590 |
2777 |
3396 |
3562 |
3181 |
1808 |
25 |
3506 |
3454 |
4622 |
4669 |
3827 |
3265 |
2150 |
26 |
2569 |
7642 |
4675 |
3213 |
3552 |
5288 |
2725 |
27 |
9278 |
10331 |
10586 |
14303 |
11973 |
7440 |
2451 |
28 |
5716 |
4894 |
5953 |
5173 |
4908 |
3474 |
1811 |
29 |
1331 |
1590 |
2066 |
2101 |
1120 |
868 |
497 |
30 |
5171 |
5402 |
12911 |
11496 |
15880 |
9930 |
5485 |
31 |
230 |
114 |
66 |
59 |
95 |
30 |
20 |
32 |
1871 |
1599 |
1775 |
1796 |
1710 |
1456 |
981 |
Serie mensual de robos totales por Estado
RobosPorEstadoMensual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(delitos3,delitos3$Ano==losAnos[length(losAnos)] & delitos3$meses==losmeses[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosPorEstadoMensual<-cbind(RobosPorEstadoMensual,mitab)
}
names(RobosPorEstadoMensual)<-c("clave de la entidad",losmeses)
kable(RobosPorEstadoMensual)
1 |
823 |
745 |
845 |
808 |
902 |
809 |
883 |
0 |
0 |
0 |
0 |
0 |
2 |
2351 |
2272 |
2609 |
2543 |
2451 |
2552 |
2680 |
0 |
0 |
0 |
0 |
0 |
3 |
371 |
412 |
448 |
408 |
362 |
405 |
373 |
0 |
0 |
0 |
0 |
0 |
4 |
75 |
72 |
83 |
89 |
86 |
87 |
86 |
0 |
0 |
0 |
0 |
0 |
5 |
472 |
480 |
522 |
615 |
553 |
605 |
775 |
0 |
0 |
0 |
0 |
0 |
6 |
560 |
496 |
561 |
576 |
599 |
560 |
648 |
0 |
0 |
0 |
0 |
0 |
7 |
240 |
244 |
278 |
236 |
255 |
222 |
244 |
0 |
0 |
0 |
0 |
0 |
8 |
1122 |
1033 |
1183 |
1091 |
1127 |
1165 |
1277 |
0 |
0 |
0 |
0 |
0 |
9 |
6034 |
5951 |
6923 |
6572 |
6932 |
6813 |
6791 |
0 |
0 |
0 |
0 |
0 |
10 |
666 |
659 |
803 |
817 |
628 |
863 |
750 |
0 |
0 |
0 |
0 |
0 |
11 |
2606 |
2486 |
2686 |
2487 |
2333 |
2531 |
2573 |
0 |
0 |
0 |
0 |
0 |
12 |
464 |
444 |
534 |
496 |
557 |
505 |
476 |
0 |
0 |
0 |
0 |
0 |
13 |
706 |
721 |
1039 |
852 |
887 |
971 |
865 |
0 |
0 |
0 |
0 |
0 |
14 |
4202 |
3823 |
4418 |
4102 |
4087 |
4565 |
4631 |
0 |
0 |
0 |
0 |
0 |
15 |
10174 |
10499 |
11950 |
11247 |
11778 |
11851 |
11894 |
0 |
0 |
0 |
0 |
0 |
16 |
1179 |
926 |
1091 |
986 |
999 |
1044 |
1052 |
0 |
0 |
0 |
0 |
0 |
17 |
1039 |
1146 |
1336 |
1285 |
1273 |
1298 |
1215 |
0 |
0 |
0 |
0 |
0 |
18 |
69 |
74 |
71 |
54 |
58 |
70 |
90 |
0 |
0 |
0 |
0 |
0 |
19 |
1164 |
992 |
1208 |
1202 |
1108 |
999 |
1073 |
0 |
0 |
0 |
0 |
0 |
20 |
853 |
776 |
843 |
740 |
740 |
793 |
897 |
0 |
0 |
0 |
0 |
0 |
21 |
2070 |
2106 |
2279 |
2248 |
2269 |
2587 |
2701 |
0 |
0 |
0 |
0 |
0 |
22 |
1753 |
1656 |
1884 |
1757 |
1903 |
1780 |
1868 |
0 |
0 |
0 |
0 |
0 |
23 |
1168 |
1056 |
1354 |
1317 |
1354 |
1390 |
1316 |
0 |
0 |
0 |
0 |
0 |
24 |
1045 |
827 |
1056 |
1008 |
1092 |
1150 |
1156 |
0 |
0 |
0 |
0 |
0 |
25 |
593 |
635 |
668 |
643 |
631 |
644 |
544 |
0 |
0 |
0 |
0 |
0 |
26 |
634 |
752 |
811 |
702 |
705 |
639 |
653 |
0 |
0 |
0 |
0 |
0 |
27 |
948 |
941 |
1040 |
834 |
951 |
1093 |
1134 |
0 |
0 |
0 |
0 |
0 |
28 |
691 |
577 |
771 |
736 |
763 |
758 |
706 |
0 |
0 |
0 |
0 |
0 |
29 |
214 |
209 |
261 |
214 |
241 |
252 |
309 |
0 |
0 |
0 |
0 |
0 |
30 |
1936 |
1806 |
2047 |
1981 |
1947 |
1968 |
1879 |
0 |
0 |
0 |
0 |
0 |
31 |
36 |
28 |
19 |
25 |
23 |
23 |
35 |
0 |
0 |
0 |
0 |
0 |
32 |
504 |
454 |
541 |
503 |
482 |
501 |
462 |
0 |
0 |
0 |
0 |
0 |
Serie mensual de robos con violencia por Estado
RobosConViolenciaPorEstadoMensual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(delitos3,delitos3$Ano==losAnos[length(losAnos)] & delitos3$Modalidad=="Con violencia" & delitos3$meses==losmeses[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosConViolenciaPorEstadoMensual<-cbind(RobosConViolenciaPorEstadoMensual,mitab)
}
names(RobosConViolenciaPorEstadoMensual)<-c("clave de la entidad",losmeses)
kable(RobosConViolenciaPorEstadoMensual)
1 |
70 |
70 |
72 |
82 |
71 |
69 |
76 |
0 |
0 |
0 |
0 |
0 |
2 |
826 |
706 |
909 |
816 |
781 |
790 |
879 |
0 |
0 |
0 |
0 |
0 |
3 |
35 |
40 |
43 |
33 |
34 |
15 |
32 |
0 |
0 |
0 |
0 |
0 |
4 |
19 |
17 |
22 |
24 |
21 |
33 |
29 |
0 |
0 |
0 |
0 |
0 |
5 |
42 |
47 |
33 |
47 |
31 |
24 |
24 |
0 |
0 |
0 |
0 |
0 |
6 |
10 |
11 |
10 |
14 |
7 |
3 |
12 |
0 |
0 |
0 |
0 |
0 |
7 |
87 |
54 |
110 |
75 |
91 |
57 |
74 |
0 |
0 |
0 |
0 |
0 |
8 |
116 |
103 |
122 |
107 |
120 |
116 |
117 |
0 |
0 |
0 |
0 |
0 |
9 |
1982 |
1898 |
1941 |
1811 |
1874 |
1796 |
1867 |
0 |
0 |
0 |
0 |
0 |
10 |
57 |
68 |
56 |
35 |
110 |
64 |
69 |
0 |
0 |
0 |
0 |
0 |
11 |
897 |
867 |
943 |
795 |
656 |
718 |
796 |
0 |
0 |
0 |
0 |
0 |
12 |
207 |
204 |
239 |
216 |
224 |
199 |
188 |
0 |
0 |
0 |
0 |
0 |
13 |
280 |
271 |
453 |
342 |
300 |
320 |
335 |
0 |
0 |
0 |
0 |
0 |
14 |
1577 |
1455 |
1617 |
1471 |
1480 |
1593 |
1729 |
0 |
0 |
0 |
0 |
0 |
15 |
5691 |
5694 |
6351 |
6099 |
6423 |
6406 |
6240 |
0 |
0 |
0 |
0 |
0 |
16 |
515 |
399 |
450 |
421 |
400 |
412 |
385 |
0 |
0 |
0 |
0 |
0 |
17 |
275 |
339 |
375 |
360 |
378 |
372 |
335 |
0 |
0 |
0 |
0 |
0 |
18 |
13 |
17 |
10 |
15 |
6 |
11 |
18 |
0 |
0 |
0 |
0 |
0 |
19 |
197 |
139 |
230 |
210 |
240 |
191 |
204 |
0 |
0 |
0 |
0 |
0 |
20 |
352 |
271 |
261 |
243 |
270 |
302 |
324 |
0 |
0 |
0 |
0 |
0 |
21 |
933 |
950 |
1071 |
951 |
1002 |
1163 |
1165 |
0 |
0 |
0 |
0 |
0 |
22 |
194 |
172 |
179 |
217 |
217 |
188 |
180 |
0 |
0 |
0 |
0 |
0 |
23 |
251 |
215 |
278 |
290 |
304 |
267 |
228 |
0 |
0 |
0 |
0 |
0 |
24 |
245 |
191 |
249 |
250 |
278 |
304 |
291 |
0 |
0 |
0 |
0 |
0 |
25 |
271 |
309 |
326 |
327 |
340 |
321 |
256 |
0 |
0 |
0 |
0 |
0 |
26 |
340 |
362 |
461 |
429 |
360 |
370 |
403 |
0 |
0 |
0 |
0 |
0 |
27 |
401 |
325 |
365 |
310 |
361 |
349 |
340 |
0 |
0 |
0 |
0 |
0 |
28 |
271 |
196 |
276 |
269 |
273 |
285 |
241 |
0 |
0 |
0 |
0 |
0 |
29 |
55 |
64 |
81 |
59 |
71 |
83 |
84 |
0 |
0 |
0 |
0 |
0 |
30 |
832 |
709 |
824 |
771 |
813 |
785 |
751 |
0 |
0 |
0 |
0 |
0 |
31 |
4 |
3 |
1 |
3 |
3 |
1 |
5 |
0 |
0 |
0 |
0 |
0 |
32 |
142 |
141 |
160 |
178 |
133 |
129 |
98 |
0 |
0 |
0 |
0 |
0 |
Porcentaje de robos con violencia por mes
prvm<-RobosPorEstadoMensual
prvm[,2:13]<-round(RobosConViolenciaPorEstadoMensual[,2:13]/RobosPorEstadoMensual[,2:13]*100,2)
names(prvm)<-c("Entidad",levels(losmeses))
kable(prvm)
1 |
8.51 |
9.40 |
8.52 |
10.15 |
7.87 |
8.53 |
8.61 |
NaN |
NaN |
NaN |
NaN |
NaN |
2 |
35.13 |
31.07 |
34.84 |
32.09 |
31.86 |
30.96 |
32.80 |
NaN |
NaN |
NaN |
NaN |
NaN |
3 |
9.43 |
9.71 |
9.60 |
8.09 |
9.39 |
3.70 |
8.58 |
NaN |
NaN |
NaN |
NaN |
NaN |
4 |
25.33 |
23.61 |
26.51 |
26.97 |
24.42 |
37.93 |
33.72 |
NaN |
NaN |
NaN |
NaN |
NaN |
5 |
8.90 |
9.79 |
6.32 |
7.64 |
5.61 |
3.97 |
3.10 |
NaN |
NaN |
NaN |
NaN |
NaN |
6 |
1.79 |
2.22 |
1.78 |
2.43 |
1.17 |
0.54 |
1.85 |
NaN |
NaN |
NaN |
NaN |
NaN |
7 |
36.25 |
22.13 |
39.57 |
31.78 |
35.69 |
25.68 |
30.33 |
NaN |
NaN |
NaN |
NaN |
NaN |
8 |
10.34 |
9.97 |
10.31 |
9.81 |
10.65 |
9.96 |
9.16 |
NaN |
NaN |
NaN |
NaN |
NaN |
9 |
32.85 |
31.89 |
28.04 |
27.56 |
27.03 |
26.36 |
27.49 |
NaN |
NaN |
NaN |
NaN |
NaN |
10 |
8.56 |
10.32 |
6.97 |
4.28 |
17.52 |
7.42 |
9.20 |
NaN |
NaN |
NaN |
NaN |
NaN |
11 |
34.42 |
34.88 |
35.11 |
31.97 |
28.12 |
28.37 |
30.94 |
NaN |
NaN |
NaN |
NaN |
NaN |
12 |
44.61 |
45.95 |
44.76 |
43.55 |
40.22 |
39.41 |
39.50 |
NaN |
NaN |
NaN |
NaN |
NaN |
13 |
39.66 |
37.59 |
43.60 |
40.14 |
33.82 |
32.96 |
38.73 |
NaN |
NaN |
NaN |
NaN |
NaN |
14 |
37.53 |
38.06 |
36.60 |
35.86 |
36.21 |
34.90 |
37.34 |
NaN |
NaN |
NaN |
NaN |
NaN |
15 |
55.94 |
54.23 |
53.15 |
54.23 |
54.53 |
54.05 |
52.46 |
NaN |
NaN |
NaN |
NaN |
NaN |
16 |
43.68 |
43.09 |
41.25 |
42.70 |
40.04 |
39.46 |
36.60 |
NaN |
NaN |
NaN |
NaN |
NaN |
17 |
26.47 |
29.58 |
28.07 |
28.02 |
29.69 |
28.66 |
27.57 |
NaN |
NaN |
NaN |
NaN |
NaN |
18 |
18.84 |
22.97 |
14.08 |
27.78 |
10.34 |
15.71 |
20.00 |
NaN |
NaN |
NaN |
NaN |
NaN |
19 |
16.92 |
14.01 |
19.04 |
17.47 |
21.66 |
19.12 |
19.01 |
NaN |
NaN |
NaN |
NaN |
NaN |
20 |
41.27 |
34.92 |
30.96 |
32.84 |
36.49 |
38.08 |
36.12 |
NaN |
NaN |
NaN |
NaN |
NaN |
21 |
45.07 |
45.11 |
46.99 |
42.30 |
44.16 |
44.96 |
43.13 |
NaN |
NaN |
NaN |
NaN |
NaN |
22 |
11.07 |
10.39 |
9.50 |
12.35 |
11.40 |
10.56 |
9.64 |
NaN |
NaN |
NaN |
NaN |
NaN |
23 |
21.49 |
20.36 |
20.53 |
22.02 |
22.45 |
19.21 |
17.33 |
NaN |
NaN |
NaN |
NaN |
NaN |
24 |
23.44 |
23.10 |
23.58 |
24.80 |
25.46 |
26.43 |
25.17 |
NaN |
NaN |
NaN |
NaN |
NaN |
25 |
45.70 |
48.66 |
48.80 |
50.86 |
53.88 |
49.84 |
47.06 |
NaN |
NaN |
NaN |
NaN |
NaN |
26 |
53.63 |
48.14 |
56.84 |
61.11 |
51.06 |
57.90 |
61.72 |
NaN |
NaN |
NaN |
NaN |
NaN |
27 |
42.30 |
34.54 |
35.10 |
37.17 |
37.96 |
31.93 |
29.98 |
NaN |
NaN |
NaN |
NaN |
NaN |
28 |
39.22 |
33.97 |
35.80 |
36.55 |
35.78 |
37.60 |
34.14 |
NaN |
NaN |
NaN |
NaN |
NaN |
29 |
25.70 |
30.62 |
31.03 |
27.57 |
29.46 |
32.94 |
27.18 |
NaN |
NaN |
NaN |
NaN |
NaN |
30 |
42.98 |
39.26 |
40.25 |
38.92 |
41.76 |
39.89 |
39.97 |
NaN |
NaN |
NaN |
NaN |
NaN |
31 |
11.11 |
10.71 |
5.26 |
12.00 |
13.04 |
4.35 |
14.29 |
NaN |
NaN |
NaN |
NaN |
NaN |
32 |
28.17 |
31.06 |
29.57 |
35.39 |
27.59 |
25.75 |
21.21 |
NaN |
NaN |
NaN |
NaN |
NaN |
Porcentajes por mes a nivel nacional
t<-colSums(RobosPorEstadoMensual[,2:13])
k<-colSums(RobosConViolenciaPorEstadoMensual[,2:13])
z<-round(k/t*100,2)
names(z)<-losmeses
kable(z)
Enero |
36.75 |
Febrero |
36.00 |
Marzo |
35.50 |
Abril |
35.12 |
Mayo |
35.29 |
Junio |
34.44 |
Julio |
34.16 |
Agosto |
NaN |
Septiembre |
NaN |
Octubre |
NaN |
Noviembre |
NaN |
Diciembre |
NaN |
Porcentaje de robos con violencia por estado y año
prv<-RobosPorEstadoAnual
prv[,2:ncol(RobosConViolenciaPorEstadoAnual)]<-round(RobosConViolenciaPorEstadoAnual[,2:ncol(RobosConViolenciaPorEstadoAnual)]/RobosPorEstadoAnual[,2:ncol(RobosConViolenciaPorEstadoAnual)]*100,2)
kable(prv)
1 |
7.82 |
7.74 |
7.38 |
7.93 |
9.22 |
9.37 |
8.77 |
2 |
18.94 |
21.27 |
24.41 |
24.34 |
28.23 |
29.71 |
32.69 |
3 |
7.66 |
7.28 |
9.60 |
8.93 |
10.31 |
10.97 |
8.35 |
4 |
21.56 |
12.56 |
16.99 |
23.04 |
19.76 |
26.92 |
28.55 |
5 |
16.90 |
13.79 |
14.09 |
12.68 |
7.68 |
9.12 |
6.17 |
6 |
14.00 |
15.85 |
13.63 |
12.43 |
5.92 |
2.04 |
1.68 |
7 |
72.72 |
63.37 |
57.51 |
59.21 |
60.58 |
44.27 |
31.88 |
8 |
13.89 |
11.81 |
11.22 |
9.46 |
10.05 |
11.62 |
10.02 |
9 |
30.62 |
26.34 |
27.70 |
34.56 |
34.31 |
32.32 |
28.62 |
10 |
18.24 |
12.00 |
8.97 |
9.56 |
6.90 |
7.83 |
8.85 |
11 |
20.69 |
24.23 |
25.77 |
29.63 |
34.88 |
38.07 |
32.04 |
12 |
26.85 |
35.21 |
53.76 |
56.46 |
48.32 |
47.24 |
42.49 |
13 |
14.09 |
18.64 |
25.24 |
31.48 |
32.47 |
32.35 |
38.09 |
14 |
23.18 |
12.74 |
34.45 |
33.93 |
36.03 |
39.90 |
36.62 |
15 |
52.22 |
39.10 |
58.16 |
58.05 |
55.03 |
55.05 |
54.04 |
16 |
26.29 |
32.90 |
37.70 |
39.65 |
40.44 |
42.17 |
40.98 |
17 |
32.76 |
29.37 |
28.08 |
23.58 |
21.53 |
27.48 |
28.33 |
18 |
25.14 |
21.01 |
20.72 |
16.30 |
22.18 |
19.19 |
18.52 |
19 |
28.54 |
31.24 |
26.06 |
23.76 |
21.58 |
16.66 |
18.22 |
20 |
46.86 |
27.81 |
34.74 |
37.34 |
31.70 |
34.68 |
35.86 |
21 |
39.42 |
42.64 |
50.17 |
57.12 |
55.05 |
49.68 |
44.50 |
22 |
19.59 |
13.23 |
9.93 |
9.76 |
11.01 |
13.70 |
10.69 |
23 |
13.60 |
19.98 |
22.85 |
30.01 |
29.48 |
28.40 |
20.47 |
24 |
21.35 |
20.24 |
23.43 |
24.27 |
21.59 |
24.90 |
24.65 |
25 |
34.66 |
40.03 |
46.76 |
54.24 |
53.49 |
49.02 |
49.33 |
26 |
25.70 |
47.70 |
44.71 |
43.01 |
48.72 |
57.17 |
55.66 |
27 |
51.29 |
44.57 |
41.56 |
57.08 |
59.37 |
57.40 |
35.31 |
28 |
29.66 |
31.49 |
36.80 |
36.69 |
37.70 |
40.20 |
36.21 |
29 |
28.10 |
33.81 |
38.54 |
48.91 |
39.69 |
33.19 |
29.24 |
30 |
28.98 |
31.96 |
45.68 |
48.72 |
53.13 |
44.27 |
40.44 |
31 |
6.34 |
4.28 |
2.98 |
2.49 |
3.62 |
5.15 |
10.58 |
32 |
25.33 |
22.69 |
24.16 |
23.23 |
23.18 |
24.71 |
28.46 |
posicionQRO2020<-length(prv[,ncol(prv)][prv[,ncol(prv)]>prv[,ncol(prv)][22]])+1
Querétaro es el estado numero 25 con más robos con violencia.
Porcentaje de robos con violencia por estado y mes
prvm<-RobosPorEstadoMensual
Los robos con más violencia en 2021 (Nacional)
losRobos<-as.data.frame(sort(unique(delitos3$Subtipo.de.delito)))
mods=unique(delitos3$Modalidad)
for (i in 1:length(mods)) {
a <-delitos3[delitos3$Ano==losAnos[length(losAnos)] & delitos3$Modalidad==mods[i],]
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
losRobos<-cbind(losRobos,b)
}
losRobos$total<-apply(losRobos[,2:3],MARGIN = 1,FUN = sum)
losRobos$cv<-round(losRobos[,2]/losRobos$total*100,2)
losRobos$sv<-round(losRobos[,3]/losRobos$total*100,2)
losRobos<-losRobos[order(losRobos$cv,decreasing = TRUE),]
names(losRobos)<-c("Subtipo",mods,"Total", paste0("Porcentaje con ",mods))
kable(losRobos)
7 |
Robo a transportista |
4131 |
767 |
4898 |
84.34 |
15.66 |
6 |
Robo a transeúnte en vía pública |
29795 |
8355 |
38150 |
78.10 |
21.90 |
18 |
Robo en transporte público individual |
1249 |
453 |
1702 |
73.38 |
26.62 |
17 |
Robo en transporte público colectivo |
5156 |
2020 |
7176 |
71.85 |
28.15 |
3 |
Robo a institución bancaria |
69 |
49 |
118 |
58.47 |
41.53 |
5 |
Robo a transeúnte en espacio abierto al público |
1947 |
1495 |
3442 |
56.57 |
43.43 |
4 |
Robo a negocio |
24022 |
25965 |
49987 |
48.06 |
51.94 |
15 |
Robo de tractores |
41 |
48 |
89 |
46.07 |
53.93 |
16 |
Robo en transporte individual |
3900 |
4990 |
8890 |
43.87 |
56.13 |
10 |
Robo de coche de 4 ruedas |
24351 |
37424 |
61775 |
39.42 |
60.58 |
14 |
Robo de motocicleta |
5170 |
12600 |
17770 |
29.09 |
70.91 |
11 |
Robo de embarcaciones pequeñas y grandes |
3 |
10 |
13 |
23.08 |
76.92 |
1 |
Otros robos |
18209 |
84208 |
102417 |
17.78 |
82.22 |
13 |
Robo de herramienta industrial o agrícola |
56 |
375 |
431 |
12.99 |
87.01 |
2 |
Robo a casa habitación |
3964 |
31219 |
35183 |
11.27 |
88.73 |
12 |
Robo de ganado |
68 |
2055 |
2123 |
3.20 |
96.80 |
8 |
Robo de autopartes |
306 |
11443 |
11749 |
2.60 |
97.40 |
9 |
Robo de cables, tubos y otros objetos destinados a servicios públicos |
28 |
1060 |
1088 |
2.57 |
97.43 |
Los robos con más violencia en 2021 (Querétaro)
losRobosQro<-as.data.frame(sort(unique(delitos3$Subtipo.de.delito)))
mods=unique(delitos3$Modalidad)
for (i in 1:length(mods)) {
a <-delitos3[delitos3$Ano==losAnos[length(losAnos)] & delitos3$Clave_Ent==22 & delitos3$Modalidad==mods[i],]
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
losRobosQro<-cbind(losRobosQro,b)
}
losRobosQro$total<-apply(losRobosQro[,2:3],MARGIN = 1,FUN = sum)
losRobosQro$cv<-round(losRobosQro[,2]/losRobosQro$total*100,2)
losRobosQro$sv<-round(losRobosQro[,3]/losRobosQro$total*100,2)
losRobosQro<-losRobosQro[order(losRobosQro$cv,decreasing = TRUE),]
names(losRobosQro)<-c("Subtipo",mods,"Total", paste0("Porcentaje con ",mods))
kable(losRobosQro)
17 |
Robo en transporte público colectivo |
114 |
86 |
200 |
57.00 |
43.00 |
13 |
Robo de herramienta industrial o agrícola |
3 |
3 |
6 |
50.00 |
50.00 |
18 |
Robo en transporte público individual |
48 |
48 |
96 |
50.00 |
50.00 |
16 |
Robo en transporte individual |
82 |
91 |
173 |
47.40 |
52.60 |
6 |
Robo a transeúnte en vía pública |
357 |
442 |
799 |
44.68 |
55.32 |
5 |
Robo a transeúnte en espacio abierto al público |
20 |
32 |
52 |
38.46 |
61.54 |
4 |
Robo a negocio |
320 |
915 |
1235 |
25.91 |
74.09 |
10 |
Robo de coche de 4 ruedas |
276 |
1385 |
1661 |
16.62 |
83.38 |
14 |
Robo de motocicleta |
34 |
370 |
404 |
8.42 |
91.58 |
2 |
Robo a casa habitación |
57 |
1342 |
1399 |
4.07 |
95.93 |
1 |
Otros robos |
35 |
6085 |
6120 |
0.57 |
99.43 |
8 |
Robo de autopartes |
1 |
343 |
344 |
0.29 |
99.71 |
12 |
Robo de ganado |
0 |
111 |
111 |
0.00 |
100.00 |
15 |
Robo de tractores |
0 |
1 |
1 |
0.00 |
100.00 |
3 |
Robo a institución bancaria |
0 |
0 |
0 |
NaN |
NaN |
7 |
Robo a transportista |
0 |
0 |
0 |
NaN |
NaN |
9 |
Robo de cables, tubos y otros objetos destinados a servicios públicos |
0 |
0 |
0 |
NaN |
NaN |
11 |
Robo de embarcaciones pequeñas y grandes |
0 |
0 |
0 |
NaN |
NaN |
El futuro
Delitos para preocuparse en Septiembre
Aquí se presentan los delitos que en promedio aumentan durante Septiembre; hemos calculado el promedio de los logaritmos de la tasa por cada 100 mil habitantes de cada mes, de cada año, por cada delito. Presentamos los delitos que, en promedio, alcanzan su máximo en Septiembre.
anos2<-unique(delitosQRO2020$Ano)
meses2<-unique(delitosQRO2020$meses)
canalDelitos<-catalogoDelitos[,1]
for(i in 1:length(meses2)){
mediamesEntodo<-c()
for(j in 1:length(catalogoDelitos[,1])){
delmes<-subset(delitosQRO2020,delitosQRO2020$meses==meses2[i] & delitosQRO2020$Subtipo.de.delito==catalogoDelitos[j,1])
delmesano<-aggregate(formula=delmes$value~delmes$Ano, data = delmes, FUN = sum)
cuantos<-nrow(delmesano)-1
delmesano<-delmesano[1:cuantos,]
pobs<-ent[22,2:(2+cuantos-1)]
pobs<-t(pobs)
delmesano$pob<-NA
delmesano$tasa<-NA
delmesano$logtasa<-NA
delmesano$pob<-pobs[,1]
delmesano$tasa<-(delmesano[,2])/delmesano$pob*100000
delmesano$logtasa<-log(delmesano$tasa+1)
mimedia<-mean(delmesano$logtasa)
miEE<-1.96*(sd(delmesano$logtasa)/sqrt(cuantos))
mediamesEntodo<-c(mediamesEntodo,mimedia)
}
canalDelitos<-cbind(canalDelitos,as.numeric(mediamesEntodo))
}
canalDelitos<-as.data.frame(canalDelitos)
names(canalDelitos)<-c("Delito",levels(meses2))
for(i in 1:55){
for(j in 2:13){
canalDelitos[i,j]<-as.numeric(canalDelitos[i,j])
}
}
aumentan<-canalDelitos[c("Delito", esteMes,proximo)]
aumentan$aumentan<-NA
aumentan$max<-NA
aumentan$max<-apply(canalDelitos[,2:13],1, max)
aumentan$aumentan<-aumentan[,3]>aumentan[,2]
aumentan$enMaximoAnual<-NA
aumentan$enMaximoAnual<-aumentan$enMaximoAnual<-aumentan$max==aumentan[c(proximo)]
alerta<-cbind(aumentan$Delito[aumentan$enMaximoAnual==TRUE & aumentan$enMaximoAnual!=0],aumentan[aumentan$enMaximoAnual ==TRUE & aumentan$enMaximoAnual!=0,3])
alerta<-as.data.frame(alerta)
names(alerta)<-c("Delito","logTasaPromedio")
miAlerta<-alerta[alerta$logTasaPromedio!=0,]
if(nrow(miAlerta)!=0){
kable(miAlerta[,1], caption=paste0("Delitos que, en promedio, aumentan en ",proximo))
cual<-miAlerta$Delito[miAlerta$logTasaPromedio==max(miAlerta$logTasaPromedio)]}else{cual=c()}
Comportamiento mensual del delito de mayor riesgo (Robo en transporte individual)
if(length(cual)!=0){
esteDelito<-subset(delitosQRO2020,delitosQRO2020$Subtipo.de.delito==cual)
mismeses2<-as.data.frame(levels(delitosQRO2020$meses))
for (i in 1:length(anos2)) {
miano1<-subset(esteDelito,esteDelito$Ano==anos2[i])
aggregate(miano1$value~miano1$meses,miano1,sum)
mismeses2<-cbind(mismeses2,as.data.frame(aggregate(miano1$value~miano1$meses,miano1,sum))[2])
}
names(mismeses2)<-c("Mes",paste0("año ",anos2))
kable(mismeses2, caption = paste0("Serie de tiempo anual y mensual para ",cual))
}
Serie de tiempo anual y mensual para Robo en transporte individual
Enero |
22 |
26 |
17 |
33 |
22 |
27 |
29 |
Febrero |
12 |
24 |
25 |
33 |
20 |
27 |
24 |
Marzo |
16 |
25 |
41 |
28 |
19 |
28 |
23 |
Abril |
12 |
15 |
25 |
21 |
36 |
17 |
24 |
Mayo |
16 |
35 |
27 |
34 |
35 |
32 |
21 |
Junio |
22 |
19 |
22 |
38 |
42 |
42 |
19 |
Julio |
11 |
22 |
27 |
24 |
27 |
50 |
33 |
Agosto |
23 |
32 |
29 |
30 |
28 |
31 |
0 |
Septiembre |
26 |
19 |
37 |
37 |
35 |
39 |
0 |
Octubre |
19 |
25 |
31 |
31 |
43 |
32 |
0 |
Noviembre |
29 |
36 |
33 |
37 |
23 |
28 |
0 |
Diciembre |
28 |
28 |
41 |
29 |
27 |
27 |
0 |
Acumulados anuales por delito, en Querétaro
delitosQro<-delitos2[delitos2$Clave_Ent=="22",]
delitoAnualQueretaro<-as.data.frame(losDelitos)
names(delitoAnualQueretaro)[1]<-c("Delito")
for(i in 1:length(losAnos)){
x=as.data.frame(aggregate(delitosQro$value ~delitosQro$Subtipo.de.delito,delitoAnualQueretaro,sum, subset=delitosQro$Ano==losAnos[i] ))
names(x)<-c("Delito", paste("AÑO ", losAnos[i]))
delitoAnualQueretaro<-merge(delitoAnualQueretaro,x,by=c("Delito"))
}
kable(delitoAnualQueretaro)
Aborto |
5 |
10 |
12 |
14 |
22 |
28 |
22 |
Abuso de confianza |
459 |
564 |
635 |
622 |
681 |
587 |
463 |
Abuso sexual |
250 |
294 |
358 |
413 |
540 |
551 |
403 |
Acoso sexual |
23 |
40 |
44 |
128 |
294 |
599 |
411 |
Allanamiento de morada |
101 |
149 |
172 |
232 |
315 |
296 |
156 |
Amenazas |
1108 |
1710 |
2665 |
3361 |
4242 |
3723 |
2521 |
Contra el medio ambiente |
3 |
4 |
2 |
2 |
3 |
3 |
2 |
Corrupción de menores |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
Daño a la propiedad |
1982 |
3862 |
5200 |
5421 |
3660 |
1360 |
922 |
Delitos cometidos por servidores públicos |
3 |
0 |
1 |
0 |
0 |
0 |
0 |
Despojo |
483 |
511 |
597 |
720 |
850 |
861 |
571 |
Electorales |
5 |
7 |
2 |
49 |
0 |
16 |
57 |
Evasión de presos |
1 |
0 |
0 |
2 |
3 |
0 |
2 |
Extorsión |
6 |
11 |
18 |
104 |
259 |
242 |
153 |
Falsedad |
37 |
95 |
79 |
88 |
101 |
88 |
77 |
Falsificación |
642 |
556 |
438 |
580 |
695 |
300 |
103 |
Feminicidio |
8 |
1 |
1 |
7 |
10 |
11 |
7 |
Fraude |
1486 |
1692 |
2034 |
2119 |
2480 |
2764 |
2015 |
Homicidio culposo |
316 |
303 |
296 |
310 |
327 |
283 |
181 |
Homicidio doloso |
131 |
118 |
175 |
180 |
176 |
182 |
111 |
Hostigamiento sexual |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incesto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incumplimiento de obligaciones de asistencia familiar |
812 |
829 |
848 |
663 |
697 |
555 |
310 |
Lesiones culposas |
541 |
784 |
793 |
893 |
972 |
847 |
585 |
Lesiones dolosas |
2804 |
3572 |
4734 |
5194 |
5690 |
4797 |
2863 |
Narcomenudeo |
224 |
826 |
942 |
1149 |
1579 |
1134 |
649 |
Otros delitos contra el patrimonio |
33 |
28 |
38 |
37 |
48 |
47 |
34 |
Otros delitos contra la familia |
66 |
112 |
164 |
211 |
207 |
201 |
142 |
Otros delitos contra la sociedad |
108 |
124 |
132 |
132 |
183 |
400 |
299 |
Otros delitos del Fuero Común |
1513 |
2561 |
3532 |
4294 |
4922 |
4063 |
2462 |
Otros delitos que atentan contra la libertad personal |
33 |
26 |
44 |
30 |
52 |
105 |
80 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
53 |
45 |
47 |
29 |
51 |
54 |
29 |
Otros delitos que atentan contra la vida y la integridad corporal |
659 |
626 |
764 |
767 |
940 |
1022 |
740 |
Otros robos |
6668 |
7819 |
9879 |
10493 |
11495 |
9967 |
6120 |
Rapto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a casa habitación |
2417 |
3282 |
3852 |
3929 |
3409 |
2735 |
1399 |
Robo a institución bancaria |
3 |
3 |
0 |
0 |
0 |
0 |
0 |
Robo a negocio |
1850 |
2613 |
3363 |
3052 |
3379 |
3196 |
1235 |
Robo a transeúnte en espacio abierto al público |
8 |
54 |
203 |
217 |
158 |
105 |
52 |
Robo a transeúnte en vía pública |
1129 |
1655 |
1976 |
2000 |
1614 |
1432 |
799 |
Robo a transportista |
141 |
125 |
98 |
104 |
0 |
0 |
0 |
Robo de autopartes |
428 |
445 |
808 |
1094 |
831 |
654 |
344 |
Robo de ganado |
319 |
266 |
224 |
205 |
258 |
173 |
111 |
Robo de maquinaria |
20 |
23 |
22 |
16 |
7 |
15 |
7 |
Robo de vehículo automotor |
3872 |
4880 |
5738 |
6165 |
4922 |
3631 |
2065 |
Robo en transporte individual |
236 |
306 |
355 |
375 |
357 |
380 |
173 |
Robo en transporte público colectivo |
487 |
593 |
400 |
92 |
251 |
340 |
200 |
Robo en transporte público individual |
55 |
55 |
102 |
94 |
135 |
132 |
96 |
Secuestro |
19 |
12 |
11 |
12 |
8 |
9 |
6 |
Tráfico de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Trata de personas |
2 |
8 |
14 |
9 |
2 |
3 |
2 |
Violación equiparada |
29 |
49 |
81 |
73 |
102 |
170 |
144 |
Violación simple |
294 |
285 |
296 |
262 |
445 |
395 |
250 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
2 |
2 |
4 |
1 |
7 |
18 |
50 |
Violencia familiar |
942 |
965 |
1186 |
1865 |
3135 |
3552 |
2246 |
Movilidad
gmr=read.csv("Global_Mobility_Report_12_2020.csv",header = T,sep = ",")
gmrMex=gmr[gmr$country_region=="Mexico",]
gmrQro<-gmrMex[gmrMex$sub_region_1==unique(gmrMex$sub_region_1)[22],]
gmrQro$mes<-substr(x = gmrQro$date,start = 6,7)
movMesQro<-as.data.frame(aggregate(gmrQro$residential_percent_change_from_baseline~gmrQro$mes,gmrQro,mean))
kable(movMesQro)
02 |
-1.600000 |
03 |
6.354839 |
04 |
21.333333 |
05 |
21.064516 |
06 |
16.333333 |
07 |
13.000000 |
08 |
11.032258 |
09 |
11.166667 |
10 |
9.935484 |
11 |
10.233333 |
12 |
10.444444 |
delitosQueretaro <-delitos2 %>% filter(Clave_Ent==22) %>% mutate(trimestre=
paste0(Ano,
"-",
ifelse(meses %in% unique(meses)[1:3],1,ifelse(meses %in% unique(meses)[4:6],2,ifelse(meses %in% unique(meses)[7:9],3,ifelse(meses %in% unique(meses)[01:12],4,NA))))
)
)%>% group_by(trimestre) %>% summarise(delitosEnElTrimestre=sum(value))%>%data.frame(.)
kable(delitosQueretaro)
2015-1 |
7693 |
2015-2 |
8143 |
2015-3 |
8275 |
2015-4 |
8706 |
2016-1 |
7993 |
2016-2 |
9922 |
2016-3 |
12704 |
2016-4 |
12281 |
2017-1 |
12318 |
2017-2 |
13494 |
2017-3 |
13671 |
2017-4 |
13896 |
2018-1 |
13577 |
2018-2 |
14767 |
2018-3 |
15013 |
2018-4 |
14452 |
2019-1 |
14870 |
2019-2 |
15909 |
2019-3 |
15231 |
2019-4 |
14505 |
2020-1 |
14190 |
2020-2 |
11105 |
2020-3 |
13491 |
2020-4 |
13240 |
2021-1 |
12960 |
2021-2 |
14031 |
2021-3 |
4678 |
2021-4 |
0 |
estados=data.frame(estados=unique(delitos2$Clave_Ent))
estados$nombre=NA
for (i in 1:nrow(estados)) {
estados$nombre[i]<-unique(delitos2$Entidad[delitos2$Clave_Ent==estados$estados[i]])
}
gobierna2020= factor(c(1,2,1,3,3,3,2,1,2,1,1,3,3,4,3,5,6,1,7,3,2,1,5,3,3,3,2,1,3,2,1,3),levels = c(1,2,3,4,5,6,7), labels = c("PAN","Morena","PRI","Movimiento ciudadano","PRD","Encuentro social","Independiente"))
estados$gobierna2020=gobierna2020
estados$gobierna2020=gobierna2020
aborto=as.data.frame(aggregate(delitos2$value~delitos2$Clave_Ent,delitos2,sum,subset = delitos2$Subtipo.de.delito=="Aborto" & (delitos2$Ano==2020|delitos2$Ano==2019)) )[2]
names(aborto)<-c("Aborto")
estados=cbind(estados,aborto)
estados=cbind(estados,ent$year2020)
estados$tasaAborto=(estados$Aborto+1)/(estados$`ent$year2020`*100000)
logtasaAborto=log(estados$tasaAborto)
estados$logtasaAborto=logtasaAborto
t.test(x = estados$logtasaAborto[estados$gobierna2020=="PAN"],y =estados$logtasaAborto[estados$gobierna2020!="PAN"],paired = F)
##
## Welch Two Sample t-test
##
## data: estados$logtasaAborto[estados$gobierna2020 == "PAN"] and estados$logtasaAborto[estados$gobierna2020 != "PAN"]
## t = 0.050284, df = 11.367, p-value = 0.9608
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.173222 1.228304
## sample estimates:
## mean of x mean of y
## -23.61699 -23.64453
t.test(x = estados$tasaAborto[estados$gobierna2020=="PAN"],y =estados$tasaAborto[estados$gobierna2020!="PAN"],paired = F)
##
## Welch Two Sample t-test
##
## data: estados$tasaAborto[estados$gobierna2020 == "PAN"] and estados$tasaAborto[estados$gobierna2020 != "PAN"]
## t = 0.57717, df = 12.695, p-value = 0.5739
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.346334e-11 1.095821e-10
## sample estimates:
## mean of x mean of y
## 1.120132e-10 8.895383e-11
wilcox.test(x = estados$tasaAborto[estados$gobierna2020=="PAN"],y =estados$tasaAborto[estados$gobierna2020!="PAN"],paired = F,conf.int = .95)
##
## Wilcoxon rank sum exact test
##
## data: estados$tasaAborto[estados$gobierna2020 == "PAN"] and estados$tasaAborto[estados$gobierna2020 != "PAN"]
## W = 107, p-value = 0.9018
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -4.379211e-11 9.599250e-11
## sample estimates:
## difference in location
## 3.598757e-12
apan=median(estados$tasaAborto[estados$gobierna2020=="PAN"])
aotros=median(estados$tasaAborto[estados$gobierna2020!="PAN"])
barplot(height =c(apan,aotros),names.arg = c("PAN","Otros"),main = "Mediana de las tasas de aborto por cada 100 mil habitantes \n entre estados con gobiernos panistas y no panistas" )

# Los estados panistas tienen tasas de aborto por cada 100 mil habitantes mayores que los estados no panistas, aunque la diferencia no es estadísticamente significativa
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.4
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
aborto <-subset(delitos2, delitos2$Subtipo.de.delito=="Aborto" & delitos2$Ano==2020)
abortomunEst<-data.frame(aggregate(aborto$value~(aborto$Clave_Ent+aborto$Cve..Municipio), data = aborto,FUN = sum))
names(abortomunEst)<-c("estados","ClaveMun","abortos")
eds<-estados[,c(1,2,3)]
abortomunEst<-left_join(x = abortomunEst,y = eds, by="estados")
popMuni<-data.frame(aggregate(pop$POB~pop$CLAVE,data = pop,subset = pop$ANO==2020, FUN = sum))
names(popMuni)<-c("ClaveMun","pob")
popMuni$ClaveMun<-as.numeric(popMuni$ClaveMun)
abortomunEst<-left_join(x = popMuni,y = abortomunEst,by="ClaveMun")
abortomunEst2<-abortomunEst
abortomunEst2$tasa<-abortomunEst2$abortos/abortomunEst2$pob*100000
abortomunEst2$abortosMasUno<-abortomunEst2$abortos+1
abortomunEst2$tasa2<-abortomunEst2$abortosMasUno/abortomunEst2$pob
#Mediana de no panistas
summary(abortomunEst2$tasa[abortomunEst2$gobierna2020!="PAN"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.1956 0.0000 32.1337
#Mediana de panistas
summary(abortomunEst2$tasa[abortomunEst2$gobierna2020=="PAN"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.3363 0.0000 14.8610
#abortomunEst2$logtasa2<-log(abortomunEst2$tasa2)
wilcox.test(x=abortomunEst2$tasa[abortomunEst2$gobierna2020=="PAN"],y = abortomunEst2$tasa[abortomunEst2$gobierna2020!="PAN"],paired = F)
##
## Wilcoxon rank sum test with continuity correction
##
## data: abortomunEst2$tasa[abortomunEst2$gobierna2020 == "PAN"] and abortomunEst2$tasa[abortomunEst2$gobierna2020 != "PAN"]
## W = 391027, p-value = 0.003765
## alternative hypothesis: true location shift is not equal to 0
barplot(height = c(mean(abortomunEst2$tasa[abortomunEst2$gobierna2020=="PAN"]),mean(abortomunEst2$tasa[abortomunEst2$gobierna2020!="PAN"])),main = "Promedio municipal de carpetas de investigación iniciadas \n por aborto, por cada 100 mil habitantes en 2020,\n según partido en el gobierno estatal",names.arg = c("PAN","Otros"))

#t.test(x = abortomunEst2$logtasa[abortomunEst2$gobierna2020=="PAN"],y = abortomunEst2$logtasa[abortomunEst2$gobierna2020!="PAN"],paired = F,var.equal = F)