Este documento hace públicos los procedimientos y los datos utilizados para analizar la incidencia delictiva en Querétaro, en arreglo con los datos del SESNSP.
Te indicamos dónde descargar los datos, y cómo procesarlos en R. La base de datos es demasiado grande para abrirse en excel, así que necesitarás un software estadístico.
Resumen
- Entre Julio y Agosto, el delito en Querétaro creció en 1.34%, en tanto que a nivel nacional lo hizo en 2.68%. Querétaro es en este periodo el estado con la decimonovena tasa de crecimiento más alta.
- En el acumulado de delitos de 2020, Querétaro alcanzó el quinto lugar nacional en carpetas de investigación por cada 100 mil habitantes; desde 2018 se había mantenido en el sexto lugar. De enero a Agosto, la tasa de delitos por cada 100 mil habitantes en Querétaro es de 1506.69, superada sólo por Aguascalientes,Baja California,Colima y Quintana Roo.
- Considerando sólo a las carpetas iniciadas en Agosto, por segunda vez en el año Querétaro fue el cuarto estado con mayor tasa de delitos por cada 100 mil habitantes para un sólo mes.
- Querétaro vuelve a ocupar el primer lugrar nacional en carpetas iniciadas por Acoso sexual y por Otros robos; también es el tercer lugar nacional en Lesiones dolosas, Robo en transporte público individual, Robo en transporte público colectivo, y Robo en transporte individual. En el otro extremo, la entidad ocupa el lugar 25 en homicidio doloso y el lugar 30 en feminicidio.
- Durante agosto, tres municipios queretanos estuvieron entre los 100 municipios con mayor tasa de carpetas de investigación iniciadas por cada 100 mil habitantes: Querétaro, El Marqués y San Juan del Río, en las posiciones 25, 74 y 79, respectivamente. Sólo la capital empeoró respecto de Julio, cuando ocupaba la posición 28.
- Acoso sexual, violación equiparada, fraude y Otros delitos que atentan contra la vida y la integridad corporal alcanzaron máximos históricos para Querétaro en Agosto. Con 56 carpetas de investigación, Querétaro alcanzó en agosto un maximo histórico para un sólo mes en la entidad en Acoso sexual; en el mismo sentido, nunca antes se habían registrado 21 carpetas por violación equiparada; otro tanto ocurrió con el fraude: las 278 carpetas abiertas por este delito son un nuevo record para la entidad, y las 106 carpetas por Otros delitos que atentan contra la vida y la integridad corporal también representan la mayor cantidad de incidentes de este tipo registrada en Querétaro.
- En el estado de Querétaro, los 10 motivos más frecuentes para iniciar carpetas de investigación en agosto fueron: Otros robos (896), Lesiones dolosas (393), Amenazas (345), Otros delitos del Fuero Común (302),Robo de vehículo automotor (301), Robo a negocio (293), Violencia familiar (292), Fraude (278), Robo a casa habitación (227), y Robo a transeúnte en vía pública (141).
- En Agosto se registraron en Querétaro dos carpetas por feminicidio, la cantidad más alta para un mes en lo que va del año en la entidad. Desde enero no se haba iniciado ninguna carpeta por incidentes de este tipo en la entidad.
- Agosto fue el mes con mayor cantidad de delitos en Jalpan de Serra en lo que va del año; se registraron 42 carpetas, la mayor cantidad desde mayo de 2019, cuando registró 57.
- Durante agosto de 2020 se registraron 21 homicidios dolosos en Querétaro; agosto fue el segundo mes con más incidentes de este tipo en lo que va del año, sólo debajo de los 26 registrados el pasado marzo.
- En 2018, el porcentaje de robos con violencia en Querétaro era de 9.93%; en lo que va de 2020, ha alcanzado el 13.85%. Durante los primeros ocho meses del año, los tipos de robo que con mayor frecuencia registraron actos violentos son: Robo a transeúnte en espacio abierto al público, Robo en transporte individual, Robo a transeúnte en vía pública, Robo en transporte público individual y Robo en transporte público colectivo.
- Entre marzo y Julio aumentó el porcentaje de robos que se cometieron con violencia en Querétaro. En agosto esta tendencia parece revertirse, toda vez que el porcentaje de robos con violencia respecto del total de los robos disminuyó hasta el 12% en este mes, para volver a sus niveles de principios de año. As, durante la pandemia disminuyó el número de carpetas de investigación iniciadas por alguna modalidad de robo, pero aumentó el porcentaje de robos violentos.
- Considerados los registros acumulados hasta agosto, 2020 ya es el segundo año con mayor proporción de homicidios dolosos cometidos con arma de fuego en Querétaro, al alcanzar el 54%, frente al 57% de 2019, y muy lejos del 39% de 2015; aunque en agosto sólo el 47% de los incidentes involucró un arma de fuego, en junio fue el 75%. Los homicidios dolosos se concentran en Querétaro, San Juan del Río y el Marqués, donde el 40%, 70% y 70.5% de los incidentes, respectivamente, se cometen con armas de fuego.
- La violación equiparada alcanzó un máximo histórico en Agosto, con 21 incidentes; en el acumulado anual, Querétaro se posiciona en el cuarto lugar nacional en este delito, con una tasa de 4.69 violaciones equiparadas por cada 100 mil habitantes, sólo por debajo de Baja California (con 5.69 incidentes por cada 100 mil habitantes), Hidalgo (6.8), y Campeche (8.49).
- Alerta en Octubre: Los delitos que tienden a aumentar en octubre son Falsificación, Incumplimiento de obligaciones de asistencia familiar, Lesiones culposas, Narcomenudeo, Otros robos, Robo a negocio y Robo a transeúnte en vía pública.
#plotly nos ayudará con los gráficos
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
#Cargo kintr para ver las tablas
library(knitr)
#instalo una reshape para transformar la estructura de las bases de datos
library(reshape2)
#indico el directorio de trabajo; si quieres trabajar en C:/, descargas o alguna otra carpeta, deberás modificar esta línea.
setwd("D:/")
#la base de datos de población de CONAPO viene en dos partes, las descomprimimos
elzip<-unzip("Municipal-Delitos-2015-2020_ago2020.zip", list = TRUE)
elzip<-unzip("Municipal-Delitos-2015-2020_ago2020.zip", elzip$Name[9])
#las leemos
pop1<-read.table("base_municipios_final_datos_01.csv",TRUE,",")
pop2<-read.table(file = "base_municipios_final_datos_02.csv",header = TRUE,sep = ",")
#Las fusionamos
pop<-rbind(pop1,pop2)
#cambiamos los nombres para evitar problemas de codificacipon
names(pop)<-names(pop)<-c(names(pop[1:6]),"ANO",names(pop[8:9]))
#Creo una tabla con la población por cada entidad federativa
names(pop)[7]<-"ANO"
years=unique(pop$ANO)
ent=unique(pop$CLAVE_ENT)
ent<-as.data.frame(ent)
for(i in 1:length(years)){
a<-subset(pop,pop$ANO==years[i])
tpob<-aggregate(a$POB~a$CLAVE_ENT,a,sum)
tpobDF<-as.data.frame(tpob)
tpobDF<-tpobDF[,2]
ent<-cbind(ent,tpobDF)
}
names(ent)<- c("Entidad", paste0("year",years))
### AHORA LOS DATOS DE SESNSP
#DELITOS
esteMes<-"Agosto"
anterior= "Julio"
proximo<-"Octubre" ## Aqui va el mes siguiente al de la publicacion de los datos de SESNSP, no el mes actual
ruta<-"D:/Municipal-Delitos-2015-2020_ago2020/Municipal-Delitos-2015-2020_ago2020.csv"
#+Municipal-Delitos-2015-2020_mar2020/
#+Municipal-Delitos-2015-2020_mar2020.csv"
delitos<-read.csv(file = ruta,header = TRUE,sep = ",")
names(delitos)<-c("Ano",names(delitos[2:21]))
delitos2<-melt(
data = delitos,
id.vars = names(delitos[1:9]),
measure.vars = names(delitos[10:21]),
variable.name = "meses")
delitos2$value[is.na(delitos2$value)]<-0
queMes<-levels(delitos2$meses)
for (i in 1:length(queMes)) {
if(queMes[i]==esteMes){elActual<-i+1}
}
Delitos por estado (Serie Anual)
losAnos<-unique(delitos2$Ano)
porEstadoAnual<-as.data.frame(order(unique(delitos2$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos2,delitos2$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
porEstadoAnual<-cbind(porEstadoAnual,mitab)
}
names(porEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
tasaPorEstadoAnual<-porEstadoAnual
tasaPorEstadoAnual[,2:7]<-round(porEstadoAnual[,2:7]/ent[,2:7]*100000,2)
nomEnt<-c()
for (i in 1:32) {
nomEnt<-c(nomEnt,delitos2$Entidad[delitos2$Clave_Ent==i][1])
}
for (i in 1:length(nomEnt)) {
porEstadoAnual[i,1]<-nomEnt[i]
tasaPorEstadoAnual[i,1]<-nomEnt[i]
}
Serie Anual (Absolutos)
kable(porEstadoAnual)
Aguascalientes |
23212 |
23729 |
33548 |
38834 |
38429 |
22862 |
Baja California |
119944 |
109109 |
111722 |
103028 |
104011 |
60633 |
Baja California Sur |
21415 |
24606 |
24174 |
23438 |
22644 |
12088 |
Campeche |
1886 |
2237 |
2056 |
2157 |
2312 |
1280 |
Coahuila de Zaragoza |
46569 |
51242 |
56311 |
56307 |
52936 |
32306 |
Colima |
6561 |
10877 |
24425 |
24494 |
26554 |
16316 |
Chiapas |
21618 |
22189 |
25364 |
28892 |
23294 |
11661 |
Chihuahua |
61280 |
57904 |
68819 |
68898 |
71837 |
45356 |
Ciudad de México |
169701 |
179720 |
204078 |
241030 |
242849 |
128112 |
Durango |
29088 |
32183 |
34851 |
31903 |
30338 |
17843 |
Guanajuato |
95782 |
106265 |
117857 |
133749 |
137658 |
80778 |
Guerrero |
36783 |
36561 |
32799 |
27695 |
27343 |
15372 |
Hidalgo |
27504 |
33754 |
43963 |
51222 |
49750 |
26950 |
Jalisco |
95331 |
136820 |
166599 |
162756 |
156654 |
84660 |
México |
323525 |
325038 |
345693 |
341028 |
354602 |
221274 |
Michoacán de Ocampo |
30899 |
32558 |
41836 |
45190 |
45377 |
30299 |
Morelos |
49245 |
45448 |
44329 |
44936 |
43191 |
26434 |
Nayarit |
6651 |
3668 |
3220 |
4545 |
4642 |
2657 |
Nuevo León |
72350 |
84746 |
83974 |
81125 |
75871 |
48751 |
Oaxaca |
6127 |
31607 |
31938 |
41989 |
43788 |
25630 |
Puebla |
64399 |
51061 |
53800 |
61172 |
76557 |
40686 |
Querétaro |
32817 |
42900 |
53379 |
57809 |
60515 |
34347 |
Quintana Roo |
32496 |
18958 |
26518 |
34043 |
45896 |
26349 |
San Luis Potosí |
21419 |
28613 |
35179 |
38362 |
52288 |
30212 |
Sinaloa |
25812 |
22141 |
22931 |
23486 |
23443 |
14683 |
Sonora |
28659 |
39423 |
25969 |
18197 |
23438 |
19074 |
Tabasco |
57452 |
59434 |
60395 |
58271 |
56561 |
28773 |
Tamaulipas |
44527 |
48528 |
47163 |
44048 |
42413 |
20694 |
Tlaxcala |
8317 |
6775 |
6964 |
6369 |
4411 |
2691 |
Veracruz de Ignacio de la Llave |
45539 |
42312 |
66379 |
60758 |
89822 |
51242 |
Yucatán |
34716 |
34288 |
24390 |
13129 |
16419 |
5252 |
Zacatecas |
16179 |
17136 |
18874 |
21070 |
23952 |
15359 |
Serie Anual (Tasa por 100 mil habitantes)
kable(tasaPorEstadoAnual)
Aguascalientes |
1742.87 |
1750.80 |
2438.47 |
2782.22 |
2715.02 |
1593.58 |
Baja California |
3572.11 |
3205.94 |
3226.28 |
2925.90 |
2906.50 |
1668.09 |
Baja California Sur |
2974.94 |
3338.69 |
3204.95 |
3038.79 |
2873.17 |
1502.16 |
Campeche |
205.71 |
239.65 |
216.32 |
222.99 |
234.95 |
127.92 |
Coahuila de Zaragoza |
1552.01 |
1683.90 |
1823.63 |
1797.79 |
1666.94 |
1003.69 |
Colima |
909.11 |
1480.54 |
3267.11 |
3221.48 |
3435.89 |
2078.07 |
Chiapas |
407.29 |
411.37 |
462.90 |
519.28 |
412.46 |
203.49 |
Chihuahua |
1694.46 |
1586.66 |
1865.32 |
1848.13 |
1907.86 |
1193.11 |
Ciudad de México |
1873.34 |
1984.98 |
2255.23 |
2665.85 |
2689.00 |
1420.52 |
Durango |
1632.71 |
1786.00 |
1915.42 |
1737.20 |
1637.28 |
954.68 |
Guanajuato |
1615.04 |
1771.83 |
1945.29 |
2186.44 |
2229.74 |
1296.98 |
Guerrero |
1028.44 |
1016.34 |
907.49 |
763.00 |
750.36 |
420.34 |
Hidalgo |
948.58 |
1148.58 |
1476.77 |
1699.32 |
1630.76 |
873.18 |
Jalisco |
1197.13 |
1698.37 |
2044.37 |
1975.44 |
1881.55 |
1006.70 |
México |
1966.28 |
1951.18 |
2050.24 |
1999.38 |
2056.19 |
1269.66 |
Michoacán de Ocampo |
665.25 |
694.97 |
886.01 |
949.87 |
946.94 |
627.91 |
Morelos |
2550.89 |
2325.04 |
2241.16 |
2246.21 |
2135.45 |
1293.21 |
Nayarit |
556.34 |
301.99 |
261.00 |
362.91 |
365.33 |
206.20 |
Nuevo León |
1389.90 |
1600.73 |
1562.24 |
1487.21 |
1371.21 |
868.98 |
Oaxaca |
152.44 |
781.10 |
784.27 |
1024.87 |
1062.62 |
618.55 |
Puebla |
1026.36 |
804.62 |
838.87 |
944.18 |
1170.15 |
616.04 |
Querétaro |
1585.70 |
2029.59 |
2475.64 |
2630.15 |
2702.63 |
1506.69 |
Quintana Roo |
2131.06 |
1211.44 |
1651.84 |
2069.19 |
2724.54 |
1529.02 |
San Luis Potosí |
776.55 |
1028.71 |
1254.74 |
1357.87 |
1837.27 |
1054.10 |
Sinaloa |
855.90 |
726.08 |
745.13 |
756.49 |
748.74 |
465.14 |
Sonora |
993.46 |
1348.87 |
876.79 |
606.54 |
771.56 |
620.34 |
Tabasco |
2367.92 |
2418.60 |
2428.49 |
2316.09 |
2222.98 |
1118.58 |
Tamaulipas |
1274.12 |
1375.86 |
1325.08 |
1226.80 |
1171.34 |
566.87 |
Tlaxcala |
642.14 |
515.44 |
523.07 |
472.50 |
323.35 |
195.00 |
Veracruz de Ignacio de la Llave |
552.57 |
508.77 |
792.40 |
720.38 |
1058.17 |
600.03 |
Yucatán |
1630.78 |
1590.44 |
1117.65 |
594.55 |
735.00 |
232.48 |
Zacatecas |
1010.11 |
1059.95 |
1158.06 |
1282.89 |
1447.61 |
921.67 |
Posición de Querétaro por año (según tasa por cada 100k habitantes)
posicionAnual<-c()
for (i in 1:length(losAnos)) {
a<-tasaPorEstadoAnual[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaPorEstadoAnual[tasaPorEstadoAnual[i+1]>a,i+1])}
posicionAnual<-c(posicionAnual,b)
}
posicionesAnual<-data.frame(losAnos, posicionAnual)
names(posicionesAnual)<-c("Año","Posición del estado de Querétaro a nivel nacional")
kable(posicionesAnual, caption="Posición de Querétaro en la incidencia delictiva anual")
Posición de Querétaro en la incidencia delictiva anual
2015 |
13 |
2016 |
5 |
2017 |
4 |
2018 |
6 |
2019 |
6 |
2020 |
5 |
Delitos por estado (Serie Mensual)
delitoMensual<-subset(delitos2, delitos2$Ano==2020)
losmeses<-unique(delitoMensual$meses)
delitoPorEstado2020=as.data.frame(order(unique(delitoMensual$Clave_Ent)))
for (i in 1:length(losmeses)) {
datos<-delitoMensual[delitoMensual$meses==losmeses[i],]
delitoAnual<-as.data.frame(aggregate(datos$value~datos$Clave_Ent,datos,sum))[2]
delitoPorEstado2020<-cbind(delitoPorEstado2020,delitoAnual)
}
names(delitoPorEstado2020)<-c("clave de la entidad",levels(losmeses))
tasaAnualDedelitoPorEstado2020<-delitoPorEstado2020
tasaAnualDedelitoPorEstado2020[,2:elActual]<-round(delitoPorEstado2020[,2:elActual]/ent$year2020*100000,2)
tasaDeCambio<-delitoPorEstado2020[,c(anterior,esteMes)]
tasaDeCambio$tasa<-NA
tasaDeCambio$tasa<-round((tasaDeCambio[2]-tasaDeCambio[1])/tasaDeCambio[1]*100,2)
#la tasa de cambio de QUerétaro
tq<-tasaDeCambio[22,3]
tq<-tq[1,1]
#Querétaro fue el iesimo estado que mas crecio
iesimo<-length(tasaDeCambio$tasa[tasaDeCambio$tasa>tq])+1
totN<-colSums(tasaDeCambio[,c(1,2)])
#El pais creció a una tasa de tmex en el periodo
tmex<-round((totN[2]-totN[1])/totN[1]*100,2)
tmex<-as.vector(tmex)[1]
# Pone nombre al estado
nomEnt<-c()
for (i in 1:32) {
nomEnt<-c(nomEnt,delitoMensual$Entidad[delitoMensual$Clave_Ent==i][1])
}
delitoPorEstado2020$`clave de la entidad`<-nomEnt
ent$Entidad<-nomEnt
tasaAnualDedelitoPorEstado2020[1]<-nomEnt
En esta sección mostramos cómo se ha comportado la incidencia delictiva mes a mes, estado por estado.
General
Entre Julio y Agosto, el delito en Querétaro creció en 1.34%, en tanto que a nivel nacional lo hizo en 2.68%. Querétaro es en este periodo el 19 estado con la tasa de crecimiento más alta.
Serie Mensual 2020 (Absolutos)
kable(delitoPorEstado2020)
Aguascalientes |
3254 |
3183 |
3429 |
2085 |
2305 |
2951 |
2925 |
2730 |
0 |
0 |
0 |
0 |
Baja California |
8384 |
8313 |
8862 |
5718 |
6247 |
6799 |
8088 |
8222 |
0 |
0 |
0 |
0 |
Baja California Sur |
1776 |
1664 |
1792 |
1039 |
1153 |
1603 |
1607 |
1454 |
0 |
0 |
0 |
0 |
Campeche |
202 |
185 |
198 |
134 |
141 |
128 |
135 |
157 |
0 |
0 |
0 |
0 |
Coahuila de Zaragoza |
4445 |
4159 |
4126 |
3051 |
3375 |
4256 |
4715 |
4179 |
0 |
0 |
0 |
0 |
Colima |
2269 |
2157 |
2169 |
1693 |
1855 |
2102 |
2118 |
1953 |
0 |
0 |
0 |
0 |
Chiapas |
1730 |
1754 |
2001 |
1221 |
1117 |
979 |
1417 |
1442 |
0 |
0 |
0 |
0 |
Chihuahua |
5587 |
5717 |
5671 |
4699 |
5000 |
6139 |
6230 |
6313 |
0 |
0 |
0 |
0 |
Ciudad de México |
18579 |
20012 |
20640 |
11818 |
10941 |
13230 |
16046 |
16846 |
0 |
0 |
0 |
0 |
Durango |
2485 |
2590 |
2665 |
1583 |
1789 |
1892 |
2365 |
2474 |
0 |
0 |
0 |
0 |
Guanajuato |
11628 |
11212 |
11622 |
8065 |
8637 |
9718 |
9936 |
9960 |
0 |
0 |
0 |
0 |
Guerrero |
2306 |
2390 |
2339 |
1496 |
1396 |
1560 |
1863 |
2022 |
0 |
0 |
0 |
0 |
Hidalgo |
4162 |
4184 |
4478 |
2937 |
2266 |
2614 |
2945 |
3364 |
0 |
0 |
0 |
0 |
Jalisco |
11832 |
11025 |
11143 |
8526 |
9430 |
10897 |
10961 |
10846 |
0 |
0 |
0 |
0 |
México |
29429 |
29815 |
29960 |
24907 |
22884 |
25990 |
28263 |
30026 |
0 |
0 |
0 |
0 |
Michoacán de Ocampo |
3991 |
3897 |
4416 |
3086 |
3590 |
3599 |
3845 |
3875 |
0 |
0 |
0 |
0 |
Morelos |
3577 |
3603 |
3708 |
2543 |
2672 |
3018 |
3551 |
3762 |
0 |
0 |
0 |
0 |
Nayarit |
351 |
401 |
407 |
251 |
292 |
313 |
311 |
331 |
0 |
0 |
0 |
0 |
Nuevo León |
6305 |
7266 |
6710 |
4850 |
5044 |
6165 |
5556 |
6855 |
0 |
0 |
0 |
0 |
Oaxaca |
3485 |
3718 |
3846 |
2708 |
2844 |
2724 |
3083 |
3222 |
0 |
0 |
0 |
0 |
Puebla |
5224 |
5216 |
5624 |
4532 |
4736 |
4784 |
5419 |
5151 |
0 |
0 |
0 |
0 |
Querétaro |
4656 |
4695 |
4843 |
3723 |
3590 |
3810 |
4485 |
4545 |
0 |
0 |
0 |
0 |
Quintana Roo |
4012 |
3753 |
4166 |
2025 |
2163 |
3201 |
3487 |
3542 |
0 |
0 |
0 |
0 |
San Luis Potosí |
4269 |
4226 |
4023 |
2722 |
3089 |
3859 |
4439 |
3585 |
0 |
0 |
0 |
0 |
Sinaloa |
1998 |
1980 |
1960 |
1231 |
1605 |
1869 |
1860 |
2180 |
0 |
0 |
0 |
0 |
Sonora |
2427 |
2313 |
2425 |
1859 |
2404 |
2217 |
2797 |
2632 |
0 |
0 |
0 |
0 |
Tabasco |
4466 |
4316 |
4315 |
2018 |
1958 |
3348 |
4026 |
4326 |
0 |
0 |
0 |
0 |
Tamaulipas |
2961 |
3023 |
3022 |
1855 |
2103 |
2684 |
2321 |
2725 |
0 |
0 |
0 |
0 |
Tlaxcala |
333 |
365 |
331 |
287 |
334 |
313 |
337 |
391 |
0 |
0 |
0 |
0 |
Veracruz de Ignacio de la Llave |
6527 |
7552 |
7598 |
5287 |
4969 |
6248 |
6434 |
6627 |
0 |
0 |
0 |
0 |
Yucatán |
990 |
867 |
823 |
419 |
387 |
568 |
627 |
571 |
0 |
0 |
0 |
0 |
Zacatecas |
2151 |
2059 |
2071 |
1441 |
1558 |
2201 |
1933 |
1945 |
0 |
0 |
0 |
0 |
Serie Mensual 2020 (Tasa por 100 mil habitantes)
kable(tasaAnualDedelitoPorEstado2020)
Aguascalientes |
226.82 |
221.87 |
239.02 |
145.33 |
160.67 |
205.70 |
203.88 |
190.29 |
0 |
0 |
0 |
0 |
Baja California |
230.65 |
228.70 |
243.81 |
157.31 |
171.86 |
187.05 |
222.51 |
226.20 |
0 |
0 |
0 |
0 |
Baja California Sur |
220.70 |
206.78 |
222.69 |
129.12 |
143.28 |
199.20 |
199.70 |
180.69 |
0 |
0 |
0 |
0 |
Campeche |
20.19 |
18.49 |
19.79 |
13.39 |
14.09 |
12.79 |
13.49 |
15.69 |
0 |
0 |
0 |
0 |
Coahuila de Zaragoza |
138.10 |
129.21 |
128.19 |
94.79 |
104.86 |
132.23 |
146.49 |
129.83 |
0 |
0 |
0 |
0 |
Colima |
288.99 |
274.72 |
276.25 |
215.63 |
236.26 |
267.72 |
269.76 |
248.74 |
0 |
0 |
0 |
0 |
Chiapas |
30.19 |
30.61 |
34.92 |
21.31 |
19.49 |
17.08 |
24.73 |
25.16 |
0 |
0 |
0 |
0 |
Chihuahua |
146.97 |
150.39 |
149.18 |
123.61 |
131.53 |
161.49 |
163.88 |
166.07 |
0 |
0 |
0 |
0 |
Ciudad de México |
206.01 |
221.90 |
228.86 |
131.04 |
121.32 |
146.70 |
177.92 |
186.79 |
0 |
0 |
0 |
0 |
Durango |
132.96 |
138.58 |
142.59 |
84.70 |
95.72 |
101.23 |
126.54 |
132.37 |
0 |
0 |
0 |
0 |
Guanajuato |
186.70 |
180.02 |
186.60 |
129.49 |
138.68 |
156.03 |
159.53 |
159.92 |
0 |
0 |
0 |
0 |
Guerrero |
63.06 |
65.35 |
63.96 |
40.91 |
38.17 |
42.66 |
50.94 |
55.29 |
0 |
0 |
0 |
0 |
Hidalgo |
134.85 |
135.56 |
145.09 |
95.16 |
73.42 |
84.69 |
95.42 |
108.99 |
0 |
0 |
0 |
0 |
Jalisco |
140.69 |
131.10 |
132.50 |
101.38 |
112.13 |
129.58 |
130.34 |
128.97 |
0 |
0 |
0 |
0 |
México |
168.86 |
171.08 |
171.91 |
142.92 |
131.31 |
149.13 |
162.17 |
172.29 |
0 |
0 |
0 |
0 |
Michoacán de Ocampo |
82.71 |
80.76 |
91.52 |
63.95 |
74.40 |
74.58 |
79.68 |
80.30 |
0 |
0 |
0 |
0 |
Morelos |
175.00 |
176.27 |
181.40 |
124.41 |
130.72 |
147.65 |
173.72 |
184.05 |
0 |
0 |
0 |
0 |
Nayarit |
27.24 |
31.12 |
31.59 |
19.48 |
22.66 |
24.29 |
24.14 |
25.69 |
0 |
0 |
0 |
0 |
Nuevo León |
112.39 |
129.52 |
119.60 |
86.45 |
89.91 |
109.89 |
99.03 |
122.19 |
0 |
0 |
0 |
0 |
Oaxaca |
84.11 |
89.73 |
92.82 |
65.35 |
68.64 |
65.74 |
74.40 |
77.76 |
0 |
0 |
0 |
0 |
Puebla |
79.10 |
78.98 |
85.15 |
68.62 |
71.71 |
72.44 |
82.05 |
77.99 |
0 |
0 |
0 |
0 |
Querétaro |
204.24 |
205.95 |
212.45 |
163.32 |
157.48 |
167.13 |
196.74 |
199.37 |
0 |
0 |
0 |
0 |
Quintana Roo |
232.81 |
217.79 |
241.75 |
117.51 |
125.52 |
185.75 |
202.35 |
205.54 |
0 |
0 |
0 |
0 |
San Luis Potosí |
148.95 |
147.45 |
140.36 |
94.97 |
107.78 |
134.64 |
154.88 |
125.08 |
0 |
0 |
0 |
0 |
Sinaloa |
63.29 |
62.72 |
62.09 |
39.00 |
50.84 |
59.21 |
58.92 |
69.06 |
0 |
0 |
0 |
0 |
Sonora |
78.93 |
75.23 |
78.87 |
60.46 |
78.19 |
72.10 |
90.97 |
85.60 |
0 |
0 |
0 |
0 |
Tabasco |
173.62 |
167.79 |
167.75 |
78.45 |
76.12 |
130.16 |
156.51 |
168.18 |
0 |
0 |
0 |
0 |
Tamaulipas |
81.11 |
82.81 |
82.78 |
50.81 |
57.61 |
73.52 |
63.58 |
74.65 |
0 |
0 |
0 |
0 |
Tlaxcala |
24.13 |
26.45 |
23.99 |
20.80 |
24.20 |
22.68 |
24.42 |
28.33 |
0 |
0 |
0 |
0 |
Veracruz de Ignacio de la Llave |
76.43 |
88.43 |
88.97 |
61.91 |
58.19 |
73.16 |
75.34 |
77.60 |
0 |
0 |
0 |
0 |
Yucatán |
43.82 |
38.38 |
36.43 |
18.55 |
17.13 |
25.14 |
27.75 |
25.28 |
0 |
0 |
0 |
0 |
Zacatecas |
129.08 |
123.56 |
124.28 |
86.47 |
93.49 |
132.08 |
116.00 |
116.72 |
0 |
0 |
0 |
0 |
posición de queretaro por mes en el país
posicionMensual<-c()
for (i in 1:length(losmeses)) {
a<-tasaAnualDedelitoPorEstado2020[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaAnualDedelitoPorEstado2020[tasaAnualDedelitoPorEstado2020[i+1]>a,i+1])}
posicionMensual<-c(posicionMensual,b)
}
posiciones<-data.frame(losmeses, posicionMensual)
names(posiciones)<-c("Mes","Posición de Querétaro a nivel nacional en el periodo")
kable(posiciones)
Enero |
7 |
Febrero |
7 |
Marzo |
7 |
Abril |
2 |
Mayo |
4 |
Junio |
6 |
Julio |
6 |
Agosto |
4 |
Septiembre |
0 |
Octubre |
0 |
Noviembre |
0 |
Diciembre |
0 |
Lugar de Querétaro en el año por delito
losDelitos<-unique(delitos2$Subtipo.de.delito)
losDelitos2020<-subset(delitos2,delitos2$Ano==2020)
delitoEstado2020=as.data.frame(order(unique(losDelitos2020$Clave_Ent)))
for (i in 1:length(losDelitos)) {
a<-subset(losDelitos2020,losDelitos2020$Subtipo.de.delito==losDelitos[i])
b<-as.data.frame(aggregate(a$value~a$Clave_Ent,a,sum))[2]
delitoEstado2020<-cbind(delitoEstado2020,b)
}
names(delitoEstado2020)<-c("claveEntidad",losDelitos)
tasaDelitoEstado2020<-delitoEstado2020
tasaDelitoEstado2020[,2:56]<-round(delitoEstado2020[,2:56]/ent$year2020*100000,2)
for (i in 1:length(nomEnt)) {
delitoEstado2020[i,1]<-nomEnt[i]
tasaDelitoEstado2020[i,1]<-nomEnt[i]
}
Incidencia en subtipos de Delito por estado en 2020
kable(delitoEstado2020)
Aguascalientes |
59 |
102 |
2453 |
558 |
1 |
3 |
30 |
8 |
0 |
0 |
275 |
0 |
0 |
53 |
143 |
54 |
0 |
275 |
1603 |
1146 |
538 |
3 |
901 |
0 |
62 |
11 |
21 |
0 |
1299 |
120 |
2 |
1259 |
959 |
365 |
73 |
2402 |
209 |
177 |
1478 |
3 |
105 |
26 |
39 |
2 |
4 |
1901 |
2170 |
314 |
0 |
35 |
521 |
25 |
264 |
0 |
811 |
Baja California |
1728 |
267 |
3780 |
1001 |
25 |
28 |
1275 |
5 |
1 |
0 |
421 |
893 |
0 |
143 |
377 |
207 |
1 |
151 |
2567 |
6867 |
35 |
21 |
2545 |
3 |
4 |
9 |
6 |
6 |
2947 |
44 |
0 |
3840 |
938 |
296 |
85 |
4358 |
750 |
538 |
6908 |
0 |
361 |
312 |
491 |
40 |
34 |
6847 |
2596 |
1569 |
4 |
53 |
204 |
17 |
576 |
0 |
4459 |
Baja California Sur |
39 |
36 |
948 |
217 |
2 |
6 |
100 |
3 |
0 |
0 |
112 |
188 |
81 |
9 |
121 |
31 |
0 |
62 |
731 |
440 |
13 |
1 |
115 |
50 |
9 |
2 |
4 |
0 |
470 |
58 |
6 |
1942 |
635 |
179 |
56 |
812 |
237 |
82 |
1597 |
5 |
405 |
172 |
30 |
0 |
1 |
291 |
894 |
99 |
0 |
49 |
65 |
2 |
179 |
0 |
502 |
Campeche |
51 |
28 |
48 |
44 |
3 |
0 |
11 |
2 |
0 |
0 |
13 |
31 |
0 |
0 |
31 |
85 |
0 |
11 |
121 |
245 |
4 |
3 |
27 |
0 |
0 |
1 |
2 |
0 |
130 |
12 |
0 |
61 |
4 |
0 |
8 |
76 |
4 |
30 |
23 |
0 |
0 |
0 |
2 |
0 |
3 |
65 |
25 |
10 |
0 |
0 |
11 |
1 |
4 |
0 |
50 |
Coahuila de Zaragoza |
138 |
129 |
2435 |
337 |
15 |
0 |
26 |
6 |
0 |
0 |
30 |
367 |
158 |
5 |
88 |
87 |
0 |
16 |
1352 |
379 |
88 |
9 |
225 |
22 |
11 |
3 |
14 |
2 |
688 |
25 |
35 |
1518 |
676 |
311 |
26 |
3788 |
259 |
659 |
6149 |
300 |
157 |
107 |
16 |
10 |
0 |
6959 |
2878 |
346 |
2 |
14 |
83 |
0 |
415 |
1 |
942 |
Colima |
370 |
68 |
774 |
369 |
10 |
2 |
0 |
5 |
0 |
0 |
252 |
216 |
0 |
19 |
79 |
6 |
0 |
27 |
1180 |
592 |
0 |
0 |
83 |
0 |
0 |
0 |
0 |
0 |
461 |
27 |
0 |
1602 |
864 |
305 |
78 |
1555 |
258 |
153 |
2859 |
0 |
484 |
0 |
20 |
0 |
75 |
834 |
1756 |
121 |
0 |
32 |
88 |
4 |
195 |
2 |
491 |
Chiapas |
291 |
418 |
414 |
348 |
16 |
6 |
97 |
7 |
1 |
0 |
97 |
104 |
66 |
13 |
324 |
0 |
0 |
422 |
156 |
1300 |
1 |
8 |
146 |
62 |
0 |
3 |
2 |
0 |
203 |
49 |
6 |
447 |
173 |
66 |
49 |
520 |
101 |
301 |
3132 |
1 |
109 |
2 |
32 |
4 |
66 |
708 |
296 |
54 |
1 |
15 |
41 |
28 |
173 |
1 |
781 |
Chihuahua |
1657 |
184 |
2807 |
723 |
23 |
7 |
302 |
13 |
2 |
0 |
483 |
936 |
0 |
121 |
579 |
148 |
0 |
230 |
1489 |
2661 |
475 |
28 |
228 |
69 |
4 |
0 |
16 |
4 |
1246 |
148 |
93 |
2468 |
1737 |
544 |
12 |
5181 |
557 |
417 |
7896 |
27 |
1047 |
14 |
59 |
19 |
0 |
5113 |
2027 |
559 |
8 |
108 |
433 |
61 |
1102 |
0 |
1291 |
Ciudad de México |
790 |
409 |
2908 |
2269 |
48 |
57 |
140 |
48 |
0 |
10 |
1167 |
2076 |
719 |
0 |
719 |
262 |
0 |
422 |
2827 |
6854 |
4681 |
124 |
6903 |
1200 |
205 |
2459 |
1783 |
17 |
10905 |
0 |
25 |
13571 |
8525 |
2460 |
264 |
5444 |
2391 |
2924 |
17529 |
0 |
215 |
13 |
140 |
64 |
1227 |
4019 |
9077 |
498 |
13 |
235 |
2569 |
408 |
3305 |
4 |
3190 |
Durango |
102 |
115 |
1248 |
556 |
11 |
0 |
50 |
0 |
0 |
0 |
289 |
261 |
60 |
9 |
156 |
2 |
0 |
178 |
1916 |
698 |
90 |
8 |
275 |
12 |
9 |
4 |
6 |
1 |
794 |
83 |
4 |
2143 |
719 |
220 |
70 |
1441 |
207 |
93 |
3719 |
1 |
61 |
114 |
4 |
1 |
13 |
513 |
803 |
128 |
0 |
10 |
52 |
0 |
60 |
0 |
534 |
Guanajuato |
2250 |
1041 |
7309 |
18 |
11 |
20 |
129 |
8 |
0 |
0 |
0 |
760 |
153 |
25 |
325 |
29 |
0 |
18 |
2777 |
2895 |
0 |
5 |
121 |
0 |
0 |
0 |
0 |
0 |
4439 |
181 |
0 |
12901 |
1741 |
792 |
11 |
5835 |
750 |
6 |
6573 |
0 |
958 |
9 |
141 |
2 |
0 |
9333 |
5699 |
253 |
1 |
82 |
245 |
20 |
60 |
0 |
12852 |
Guerrero |
825 |
99 |
1350 |
161 |
10 |
2 |
9 |
14 |
1 |
0 |
250 |
195 |
42 |
8 |
124 |
90 |
0 |
0 |
237 |
1444 |
12 |
1 |
122 |
19 |
0 |
7 |
1 |
9 |
362 |
26 |
2 |
1603 |
342 |
156 |
169 |
1069 |
286 |
9 |
1925 |
203 |
206 |
105 |
10 |
12 |
0 |
473 |
1396 |
115 |
0 |
30 |
153 |
3 |
118 |
2 |
1565 |
Hidalgo |
222 |
153 |
2888 |
722 |
14 |
14 |
218 |
16 |
0 |
4 |
1253 |
457 |
0 |
35 |
272 |
210 |
0 |
24 |
1528 |
2231 |
68 |
17 |
479 |
119 |
32 |
13 |
44 |
1 |
1081 |
68 |
0 |
2084 |
687 |
277 |
103 |
1432 |
470 |
64 |
3940 |
0 |
357 |
3 |
14 |
8 |
11 |
234 |
1747 |
143 |
2 |
39 |
87 |
1 |
303 |
15 |
2746 |
Jalisco |
1173 |
576 |
4990 |
1625 |
35 |
11 |
0 |
9 |
1 |
0 |
697 |
1460 |
176 |
42 |
224 |
0 |
0 |
217 |
3193 |
9012 |
1373 |
272 |
7174 |
52 |
75 |
60 |
0 |
21 |
6971 |
103 |
62 |
7552 |
4533 |
1287 |
516 |
4636 |
1240 |
0 |
8201 |
0 |
0 |
697 |
88 |
5 |
7 |
673 |
6700 |
168 |
0 |
84 |
1088 |
68 |
250 |
3 |
7260 |
México |
1648 |
668 |
28506 |
6578 |
97 |
101 |
758 |
104 |
1 |
0 |
1798 |
1774 |
667 |
77 |
714 |
444 |
0 |
64 |
5277 |
25495 |
1647 |
3242 |
10691 |
209 |
574 |
4358 |
6322 |
25 |
12339 |
156 |
27 |
20522 |
7056 |
2125 |
1980 |
8058 |
2882 |
86 |
10520 |
1260 |
1090 |
5 |
96 |
61 |
2453 |
2400 |
0 |
1132 |
13 |
35 |
791 |
316 |
2498 |
2 |
41532 |
Michoacán de Ocampo |
1291 |
639 |
4367 |
642 |
13 |
6 |
123 |
30 |
1 |
0 |
309 |
349 |
14 |
73 |
235 |
66 |
0 |
68 |
978 |
3848 |
29 |
694 |
419 |
79 |
25 |
109 |
15 |
12 |
586 |
55 |
88 |
2478 |
1239 |
392 |
13 |
1992 |
577 |
214 |
806 |
0 |
71 |
0 |
25 |
11 |
3 |
1318 |
2587 |
241 |
0 |
21 |
253 |
106 |
244 |
1 |
2544 |
Morelos |
538 |
153 |
583 |
1642 |
27 |
7 |
323 |
43 |
0 |
3 |
143 |
288 |
18 |
32 |
265 |
12 |
0 |
54 |
942 |
2481 |
852 |
282 |
527 |
47 |
24 |
44 |
25 |
14 |
1702 |
29 |
11 |
3077 |
885 |
349 |
87 |
1283 |
664 |
200 |
3319 |
0 |
139 |
223 |
23 |
1 |
9 |
597 |
2928 |
191 |
1 |
40 |
161 |
8 |
31 |
1 |
1106 |
Nayarit |
102 |
79 |
97 |
34 |
9 |
0 |
7 |
1 |
0 |
0 |
72 |
0 |
3 |
0 |
77 |
11 |
0 |
85 |
82 |
229 |
19 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
107 |
4 |
1 |
87 |
113 |
14 |
5 |
57 |
15 |
0 |
542 |
0 |
180 |
5 |
6 |
3 |
2 |
96 |
44 |
13 |
1 |
3 |
2 |
0 |
8 |
0 |
440 |
Nuevo León |
595 |
330 |
2269 |
833 |
42 |
67 |
168 |
12 |
1 |
62 |
1331 |
827 |
284 |
31 |
534 |
219 |
0 |
477 |
1629 |
1213 |
84 |
461 |
618 |
332 |
42 |
13 |
24 |
5 |
1372 |
67 |
23 |
4701 |
1789 |
445 |
259 |
3078 |
630 |
43 |
11598 |
0 |
242 |
3506 |
112 |
27 |
8 |
2431 |
1918 |
148 |
1 |
121 |
581 |
0 |
1353 |
12 |
1783 |
Oaxaca |
568 |
554 |
2690 |
580 |
24 |
7 |
156 |
19 |
0 |
0 |
125 |
358 |
125 |
31 |
276 |
155 |
0 |
46 |
836 |
1630 |
122 |
37 |
1016 |
116 |
59 |
129 |
18 |
19 |
881 |
55 |
19 |
2054 |
924 |
303 |
77 |
1724 |
503 |
249 |
4141 |
2 |
74 |
146 |
31 |
9 |
350 |
187 |
2700 |
182 |
1 |
119 |
166 |
2 |
304 |
28 |
703 |
Puebla |
618 |
235 |
2791 |
473 |
39 |
4 |
289 |
17 |
0 |
0 |
159 |
481 |
162 |
42 |
282 |
205 |
0 |
453 |
1286 |
7114 |
172 |
676 |
1148 |
0 |
51 |
122 |
405 |
23 |
2166 |
88 |
226 |
3221 |
1369 |
584 |
103 |
1629 |
883 |
186 |
6254 |
0 |
163 |
540 |
21 |
2 |
329 |
703 |
2540 |
267 |
2 |
35 |
159 |
38 |
725 |
7 |
1199 |
Querétaro |
121 |
187 |
3281 |
525 |
3 |
19 |
682 |
6 |
0 |
0 |
64 |
355 |
390 |
0 |
280 |
107 |
0 |
36 |
1808 |
2387 |
490 |
0 |
953 |
72 |
93 |
249 |
253 |
0 |
2011 |
114 |
14 |
6647 |
1597 |
356 |
159 |
894 |
560 |
30 |
2433 |
13 |
347 |
131 |
0 |
0 |
169 |
756 |
2509 |
202 |
0 |
55 |
210 |
2 |
0 |
14 |
2763 |
Quintana Roo |
408 |
523 |
1424 |
429 |
8 |
11 |
182 |
8 |
1 |
0 |
371 |
369 |
121 |
24 |
379 |
0 |
0 |
112 |
1250 |
1793 |
26 |
31 |
1011 |
99 |
73 |
30 |
55 |
6 |
2909 |
26 |
142 |
3005 |
278 |
1178 |
176 |
2039 |
379 |
166 |
3031 |
0 |
265 |
369 |
50 |
16 |
1 |
731 |
1360 |
150 |
2 |
133 |
143 |
44 |
350 |
14 |
648 |
San Luis Potosí |
411 |
244 |
2543 |
328 |
19 |
9 |
163 |
12 |
0 |
0 |
382 |
341 |
122 |
14 |
435 |
0 |
0 |
198 |
804 |
2238 |
748 |
226 |
521 |
19 |
15 |
34 |
4 |
4 |
967 |
153 |
54 |
2680 |
1232 |
452 |
102 |
2885 |
432 |
727 |
5183 |
0 |
263 |
1 |
24 |
9 |
0 |
967 |
1923 |
333 |
3 |
0 |
57 |
42 |
429 |
1 |
1459 |
Sinaloa |
487 |
403 |
1418 |
368 |
16 |
2 |
372 |
6 |
1 |
0 |
815 |
221 |
57 |
0 |
92 |
53 |
0 |
23 |
371 |
2202 |
3 |
3 |
10 |
0 |
5 |
2 |
7 |
13 |
537 |
23 |
0 |
973 |
255 |
117 |
33 |
1042 |
191 |
24 |
3169 |
0 |
59 |
50 |
27 |
5 |
31 |
201 |
638 |
54 |
1 |
10 |
61 |
0 |
144 |
3 |
85 |
Sonora |
870 |
241 |
910 |
471 |
14 |
2 |
171 |
2 |
0 |
2 |
279 |
327 |
36 |
9 |
125 |
32 |
0 |
45 |
841 |
1808 |
53 |
9 |
195 |
197 |
2 |
0 |
11 |
2 |
560 |
67 |
58 |
2650 |
301 |
92 |
34 |
1229 |
172 |
174 |
3157 |
6 |
676 |
87 |
22 |
1 |
38 |
1811 |
336 |
135 |
0 |
9 |
9 |
0 |
36 |
0 |
760 |
Tabasco |
346 |
184 |
2503 |
490 |
11 |
2 |
415 |
22 |
0 |
0 |
320 |
100 |
0 |
147 |
173 |
0 |
0 |
362 |
1204 |
1631 |
8 |
8 |
2535 |
0 |
8 |
4 |
14 |
1 |
995 |
444 |
0 |
1652 |
519 |
346 |
67 |
1411 |
283 |
90 |
4078 |
0 |
509 |
13 |
29 |
2 |
0 |
52 |
2541 |
273 |
3 |
12 |
116 |
0 |
186 |
1 |
4663 |
Tamaulipas |
429 |
440 |
1346 |
508 |
6 |
24 |
138 |
12 |
0 |
0 |
272 |
337 |
49 |
27 |
271 |
0 |
0 |
74 |
930 |
1537 |
8 |
0 |
74 |
0 |
0 |
0 |
0 |
2 |
851 |
50 |
1 |
2372 |
655 |
267 |
86 |
1967 |
306 |
18 |
4273 |
0 |
595 |
423 |
23 |
1 |
0 |
131 |
985 |
139 |
0 |
40 |
87 |
4 |
263 |
0 |
673 |
Tlaxcala |
72 |
27 |
152 |
54 |
1 |
0 |
6 |
11 |
0 |
0 |
6 |
20 |
2 |
1 |
23 |
0 |
0 |
0 |
168 |
1019 |
4 |
84 |
52 |
1 |
2 |
1 |
1 |
1 |
198 |
21 |
26 |
74 |
44 |
6 |
1 |
135 |
23 |
12 |
8 |
0 |
13 |
1 |
0 |
9 |
0 |
164 |
15 |
33 |
2 |
1 |
5 |
0 |
0 |
0 |
192 |
Veracruz de Ignacio de la Llave |
878 |
572 |
4347 |
1022 |
61 |
16 |
121 |
94 |
0 |
0 |
476 |
436 |
16 |
183 |
257 |
9 |
1 |
839 |
1784 |
4406 |
77 |
137 |
1372 |
194 |
47 |
43 |
47 |
23 |
3641 |
319 |
58 |
2584 |
2048 |
716 |
492 |
4117 |
1340 |
574 |
6681 |
720 |
675 |
1092 |
20 |
4 |
0 |
408 |
4285 |
376 |
1 |
83 |
269 |
128 |
265 |
5 |
2883 |
Yucatán |
29 |
74 |
138 |
30 |
5 |
0 |
143 |
0 |
0 |
0 |
3 |
46 |
3 |
0 |
25 |
0 |
0 |
2 |
216 |
92 |
1 |
0 |
46 |
0 |
0 |
0 |
0 |
0 |
74 |
2 |
3 |
0 |
267 |
240 |
0 |
890 |
7 |
188 |
407 |
0 |
112 |
24 |
2 |
14 |
0 |
109 |
1342 |
45 |
0 |
11 |
15 |
1 |
14 |
0 |
632 |
Zacatecas |
473 |
86 |
1298 |
358 |
7 |
1 |
146 |
26 |
0 |
0 |
256 |
136 |
62 |
15 |
107 |
66 |
0 |
62 |
237 |
981 |
22 |
5 |
13 |
12 |
0 |
1 |
7 |
0 |
115 |
115 |
19 |
2558 |
648 |
199 |
242 |
1338 |
233 |
54 |
2255 |
0 |
292 |
75 |
12 |
6 |
0 |
211 |
809 |
123 |
6 |
66 |
48 |
1 |
173 |
3 |
1381 |
Tasa por cada 100 mil habitantes
kable(tasaDelitoEstado2020)
Aguascalientes |
4.11 |
7.11 |
170.98 |
38.89 |
0.07 |
0.21 |
2.09 |
0.56 |
0.00 |
0.00 |
19.17 |
0.00 |
0.00 |
3.69 |
9.97 |
3.76 |
0.00 |
19.17 |
111.74 |
79.88 |
37.50 |
0.21 |
62.80 |
0.00 |
4.32 |
0.77 |
1.46 |
0.00 |
90.55 |
8.36 |
0.14 |
87.76 |
66.85 |
25.44 |
5.09 |
167.43 |
14.57 |
12.34 |
103.02 |
0.21 |
7.32 |
1.81 |
2.72 |
0.14 |
0.28 |
132.51 |
151.26 |
21.89 |
0.00 |
2.44 |
36.32 |
1.74 |
18.40 |
0.00 |
56.53 |
Baja California |
47.54 |
7.35 |
103.99 |
27.54 |
0.69 |
0.77 |
35.08 |
0.14 |
0.03 |
0.00 |
11.58 |
24.57 |
0.00 |
3.93 |
10.37 |
5.69 |
0.03 |
4.15 |
70.62 |
188.92 |
0.96 |
0.58 |
70.02 |
0.08 |
0.11 |
0.25 |
0.17 |
0.17 |
81.08 |
1.21 |
0.00 |
105.64 |
25.81 |
8.14 |
2.34 |
119.89 |
20.63 |
14.80 |
190.05 |
0.00 |
9.93 |
8.58 |
13.51 |
1.10 |
0.94 |
188.37 |
71.42 |
43.17 |
0.11 |
1.46 |
5.61 |
0.47 |
15.85 |
0.00 |
122.67 |
Baja California Sur |
4.85 |
4.47 |
117.81 |
26.97 |
0.25 |
0.75 |
12.43 |
0.37 |
0.00 |
0.00 |
13.92 |
23.36 |
10.07 |
1.12 |
15.04 |
3.85 |
0.00 |
7.70 |
90.84 |
54.68 |
1.62 |
0.12 |
14.29 |
6.21 |
1.12 |
0.25 |
0.50 |
0.00 |
58.41 |
7.21 |
0.75 |
241.33 |
78.91 |
22.24 |
6.96 |
100.91 |
29.45 |
10.19 |
198.46 |
0.62 |
50.33 |
21.37 |
3.73 |
0.00 |
0.12 |
36.16 |
111.10 |
12.30 |
0.00 |
6.09 |
8.08 |
0.25 |
22.24 |
0.00 |
62.38 |
Campeche |
5.10 |
2.80 |
4.80 |
4.40 |
0.30 |
0.00 |
1.10 |
0.20 |
0.00 |
0.00 |
1.30 |
3.10 |
0.00 |
0.00 |
3.10 |
8.49 |
0.00 |
1.10 |
12.09 |
24.48 |
0.40 |
0.30 |
2.70 |
0.00 |
0.00 |
0.10 |
0.20 |
0.00 |
12.99 |
1.20 |
0.00 |
6.10 |
0.40 |
0.00 |
0.80 |
7.60 |
0.40 |
3.00 |
2.30 |
0.00 |
0.00 |
0.00 |
0.20 |
0.00 |
0.30 |
6.50 |
2.50 |
1.00 |
0.00 |
0.00 |
1.10 |
0.10 |
0.40 |
0.00 |
5.00 |
Coahuila de Zaragoza |
4.29 |
4.01 |
75.65 |
10.47 |
0.47 |
0.00 |
0.81 |
0.19 |
0.00 |
0.00 |
0.93 |
11.40 |
4.91 |
0.16 |
2.73 |
2.70 |
0.00 |
0.50 |
42.00 |
11.77 |
2.73 |
0.28 |
6.99 |
0.68 |
0.34 |
0.09 |
0.43 |
0.06 |
21.37 |
0.78 |
1.09 |
47.16 |
21.00 |
9.66 |
0.81 |
117.69 |
8.05 |
20.47 |
191.04 |
9.32 |
4.88 |
3.32 |
0.50 |
0.31 |
0.00 |
216.20 |
89.41 |
10.75 |
0.06 |
0.43 |
2.58 |
0.00 |
12.89 |
0.03 |
29.27 |
Colima |
47.12 |
8.66 |
98.58 |
47.00 |
1.27 |
0.25 |
0.00 |
0.64 |
0.00 |
0.00 |
32.10 |
27.51 |
0.00 |
2.42 |
10.06 |
0.76 |
0.00 |
3.44 |
150.29 |
75.40 |
0.00 |
0.00 |
10.57 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
58.71 |
3.44 |
0.00 |
204.04 |
110.04 |
38.85 |
9.93 |
198.05 |
32.86 |
19.49 |
364.13 |
0.00 |
61.64 |
0.00 |
2.55 |
0.00 |
9.55 |
106.22 |
223.65 |
15.41 |
0.00 |
4.08 |
11.21 |
0.51 |
24.84 |
0.25 |
62.54 |
Chiapas |
5.08 |
7.29 |
7.22 |
6.07 |
0.28 |
0.10 |
1.69 |
0.12 |
0.02 |
0.00 |
1.69 |
1.81 |
1.15 |
0.23 |
5.65 |
0.00 |
0.00 |
7.36 |
2.72 |
22.69 |
0.02 |
0.14 |
2.55 |
1.08 |
0.00 |
0.05 |
0.03 |
0.00 |
3.54 |
0.86 |
0.10 |
7.80 |
3.02 |
1.15 |
0.86 |
9.07 |
1.76 |
5.25 |
54.66 |
0.02 |
1.90 |
0.03 |
0.56 |
0.07 |
1.15 |
12.36 |
5.17 |
0.94 |
0.02 |
0.26 |
0.72 |
0.49 |
3.02 |
0.02 |
13.63 |
Chihuahua |
43.59 |
4.84 |
73.84 |
19.02 |
0.61 |
0.18 |
7.94 |
0.34 |
0.05 |
0.00 |
12.71 |
24.62 |
0.00 |
3.18 |
15.23 |
3.89 |
0.00 |
6.05 |
39.17 |
70.00 |
12.50 |
0.74 |
6.00 |
1.82 |
0.11 |
0.00 |
0.42 |
0.11 |
32.78 |
3.89 |
2.45 |
64.92 |
45.69 |
14.31 |
0.32 |
136.29 |
14.65 |
10.97 |
207.71 |
0.71 |
27.54 |
0.37 |
1.55 |
0.50 |
0.00 |
134.50 |
53.32 |
14.70 |
0.21 |
2.84 |
11.39 |
1.60 |
28.99 |
0.00 |
33.96 |
Ciudad de México |
8.76 |
4.54 |
32.24 |
25.16 |
0.53 |
0.63 |
1.55 |
0.53 |
0.00 |
0.11 |
12.94 |
23.02 |
7.97 |
0.00 |
7.97 |
2.91 |
0.00 |
4.68 |
31.35 |
76.00 |
51.90 |
1.37 |
76.54 |
13.31 |
2.27 |
27.27 |
19.77 |
0.19 |
120.92 |
0.00 |
0.28 |
150.48 |
94.53 |
27.28 |
2.93 |
60.36 |
26.51 |
32.42 |
194.36 |
0.00 |
2.38 |
0.14 |
1.55 |
0.71 |
13.61 |
44.56 |
100.65 |
5.52 |
0.14 |
2.61 |
28.49 |
4.52 |
36.65 |
0.04 |
35.37 |
Durango |
5.46 |
6.15 |
66.77 |
29.75 |
0.59 |
0.00 |
2.68 |
0.00 |
0.00 |
0.00 |
15.46 |
13.96 |
3.21 |
0.48 |
8.35 |
0.11 |
0.00 |
9.52 |
102.51 |
37.35 |
4.82 |
0.43 |
14.71 |
0.64 |
0.48 |
0.21 |
0.32 |
0.05 |
42.48 |
4.44 |
0.21 |
114.66 |
38.47 |
11.77 |
3.75 |
77.10 |
11.08 |
4.98 |
198.98 |
0.05 |
3.26 |
6.10 |
0.21 |
0.05 |
0.70 |
27.45 |
42.96 |
6.85 |
0.00 |
0.54 |
2.78 |
0.00 |
3.21 |
0.00 |
28.57 |
Guanajuato |
36.13 |
16.71 |
117.35 |
0.29 |
0.18 |
0.32 |
2.07 |
0.13 |
0.00 |
0.00 |
0.00 |
12.20 |
2.46 |
0.40 |
5.22 |
0.47 |
0.00 |
0.29 |
44.59 |
46.48 |
0.00 |
0.08 |
1.94 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
71.27 |
2.91 |
0.00 |
207.14 |
27.95 |
12.72 |
0.18 |
93.69 |
12.04 |
0.10 |
105.54 |
0.00 |
15.38 |
0.14 |
2.26 |
0.03 |
0.00 |
149.85 |
91.50 |
4.06 |
0.02 |
1.32 |
3.93 |
0.32 |
0.96 |
0.00 |
206.35 |
Guerrero |
22.56 |
2.71 |
36.92 |
4.40 |
0.27 |
0.05 |
0.25 |
0.38 |
0.03 |
0.00 |
6.84 |
5.33 |
1.15 |
0.22 |
3.39 |
2.46 |
0.00 |
0.00 |
6.48 |
39.49 |
0.33 |
0.03 |
3.34 |
0.52 |
0.00 |
0.19 |
0.03 |
0.25 |
9.90 |
0.71 |
0.05 |
43.83 |
9.35 |
4.27 |
4.62 |
29.23 |
7.82 |
0.25 |
52.64 |
5.55 |
5.63 |
2.87 |
0.27 |
0.33 |
0.00 |
12.93 |
38.17 |
3.14 |
0.00 |
0.82 |
4.18 |
0.08 |
3.23 |
0.05 |
42.79 |
Hidalgo |
7.19 |
4.96 |
93.57 |
23.39 |
0.45 |
0.45 |
7.06 |
0.52 |
0.00 |
0.13 |
40.60 |
14.81 |
0.00 |
1.13 |
8.81 |
6.80 |
0.00 |
0.78 |
49.51 |
72.28 |
2.20 |
0.55 |
15.52 |
3.86 |
1.04 |
0.42 |
1.43 |
0.03 |
35.02 |
2.20 |
0.00 |
67.52 |
22.26 |
8.97 |
3.34 |
46.40 |
15.23 |
2.07 |
127.66 |
0.00 |
11.57 |
0.10 |
0.45 |
0.26 |
0.36 |
7.58 |
56.60 |
4.63 |
0.06 |
1.26 |
2.82 |
0.03 |
9.82 |
0.49 |
88.97 |
Jalisco |
13.95 |
6.85 |
59.34 |
19.32 |
0.42 |
0.13 |
0.00 |
0.11 |
0.01 |
0.00 |
8.29 |
17.36 |
2.09 |
0.50 |
2.66 |
0.00 |
0.00 |
2.58 |
37.97 |
107.16 |
16.33 |
3.23 |
85.31 |
0.62 |
0.89 |
0.71 |
0.00 |
0.25 |
82.89 |
1.22 |
0.74 |
89.80 |
53.90 |
15.30 |
6.14 |
55.13 |
14.74 |
0.00 |
97.52 |
0.00 |
0.00 |
8.29 |
1.05 |
0.06 |
0.08 |
8.00 |
79.67 |
2.00 |
0.00 |
1.00 |
12.94 |
0.81 |
2.97 |
0.04 |
86.33 |
México |
9.46 |
3.83 |
163.57 |
37.74 |
0.56 |
0.58 |
4.35 |
0.60 |
0.01 |
0.00 |
10.32 |
10.18 |
3.83 |
0.44 |
4.10 |
2.55 |
0.00 |
0.37 |
30.28 |
146.29 |
9.45 |
18.60 |
61.34 |
1.20 |
3.29 |
25.01 |
36.28 |
0.14 |
70.80 |
0.90 |
0.15 |
117.75 |
40.49 |
12.19 |
11.36 |
46.24 |
16.54 |
0.49 |
60.36 |
7.23 |
6.25 |
0.03 |
0.55 |
0.35 |
14.08 |
13.77 |
0.00 |
6.50 |
0.07 |
0.20 |
4.54 |
1.81 |
14.33 |
0.01 |
238.31 |
Michoacán de Ocampo |
26.75 |
13.24 |
90.50 |
13.30 |
0.27 |
0.12 |
2.55 |
0.62 |
0.02 |
0.00 |
6.40 |
7.23 |
0.29 |
1.51 |
4.87 |
1.37 |
0.00 |
1.41 |
20.27 |
79.74 |
0.60 |
14.38 |
8.68 |
1.64 |
0.52 |
2.26 |
0.31 |
0.25 |
12.14 |
1.14 |
1.82 |
51.35 |
25.68 |
8.12 |
0.27 |
41.28 |
11.96 |
4.43 |
16.70 |
0.00 |
1.47 |
0.00 |
0.52 |
0.23 |
0.06 |
27.31 |
53.61 |
4.99 |
0.00 |
0.44 |
5.24 |
2.20 |
5.06 |
0.02 |
52.72 |
Morelos |
26.32 |
7.49 |
28.52 |
80.33 |
1.32 |
0.34 |
15.80 |
2.10 |
0.00 |
0.15 |
7.00 |
14.09 |
0.88 |
1.57 |
12.96 |
0.59 |
0.00 |
2.64 |
46.08 |
121.38 |
41.68 |
13.80 |
25.78 |
2.30 |
1.17 |
2.15 |
1.22 |
0.68 |
83.27 |
1.42 |
0.54 |
150.53 |
43.30 |
17.07 |
4.26 |
62.77 |
32.48 |
9.78 |
162.37 |
0.00 |
6.80 |
10.91 |
1.13 |
0.05 |
0.44 |
29.21 |
143.24 |
9.34 |
0.05 |
1.96 |
7.88 |
0.39 |
1.52 |
0.05 |
54.11 |
Nayarit |
7.92 |
6.13 |
7.53 |
2.64 |
0.70 |
0.00 |
0.54 |
0.08 |
0.00 |
0.00 |
5.59 |
0.00 |
0.23 |
0.00 |
5.98 |
0.85 |
0.00 |
6.60 |
6.36 |
17.77 |
1.47 |
0.00 |
0.00 |
0.08 |
0.08 |
0.00 |
0.00 |
0.00 |
8.30 |
0.31 |
0.08 |
6.75 |
8.77 |
1.09 |
0.39 |
4.42 |
1.16 |
0.00 |
42.06 |
0.00 |
13.97 |
0.39 |
0.47 |
0.23 |
0.16 |
7.45 |
3.41 |
1.01 |
0.08 |
0.23 |
0.16 |
0.00 |
0.62 |
0.00 |
34.15 |
Nuevo León |
10.61 |
5.88 |
40.44 |
14.85 |
0.75 |
1.19 |
2.99 |
0.21 |
0.02 |
1.11 |
23.72 |
14.74 |
5.06 |
0.55 |
9.52 |
3.90 |
0.00 |
8.50 |
29.04 |
21.62 |
1.50 |
8.22 |
11.02 |
5.92 |
0.75 |
0.23 |
0.43 |
0.09 |
24.46 |
1.19 |
0.41 |
83.79 |
31.89 |
7.93 |
4.62 |
54.86 |
11.23 |
0.77 |
206.73 |
0.00 |
4.31 |
62.49 |
2.00 |
0.48 |
0.14 |
43.33 |
34.19 |
2.64 |
0.02 |
2.16 |
10.36 |
0.00 |
24.12 |
0.21 |
31.78 |
Oaxaca |
13.71 |
13.37 |
64.92 |
14.00 |
0.58 |
0.17 |
3.76 |
0.46 |
0.00 |
0.00 |
3.02 |
8.64 |
3.02 |
0.75 |
6.66 |
3.74 |
0.00 |
1.11 |
20.18 |
39.34 |
2.94 |
0.89 |
24.52 |
2.80 |
1.42 |
3.11 |
0.43 |
0.46 |
21.26 |
1.33 |
0.46 |
49.57 |
22.30 |
7.31 |
1.86 |
41.61 |
12.14 |
6.01 |
99.94 |
0.05 |
1.79 |
3.52 |
0.75 |
0.22 |
8.45 |
4.51 |
65.16 |
4.39 |
0.02 |
2.87 |
4.01 |
0.05 |
7.34 |
0.68 |
16.97 |
Puebla |
9.36 |
3.56 |
42.26 |
7.16 |
0.59 |
0.06 |
4.38 |
0.26 |
0.00 |
0.00 |
2.41 |
7.28 |
2.45 |
0.64 |
4.27 |
3.10 |
0.00 |
6.86 |
19.47 |
107.72 |
2.60 |
10.24 |
17.38 |
0.00 |
0.77 |
1.85 |
6.13 |
0.35 |
32.80 |
1.33 |
3.42 |
48.77 |
20.73 |
8.84 |
1.56 |
24.67 |
13.37 |
2.82 |
94.69 |
0.00 |
2.47 |
8.18 |
0.32 |
0.03 |
4.98 |
10.64 |
38.46 |
4.04 |
0.03 |
0.53 |
2.41 |
0.58 |
10.98 |
0.11 |
18.15 |
Querétaro |
5.31 |
8.20 |
143.93 |
23.03 |
0.13 |
0.83 |
29.92 |
0.26 |
0.00 |
0.00 |
2.81 |
15.57 |
17.11 |
0.00 |
12.28 |
4.69 |
0.00 |
1.58 |
79.31 |
104.71 |
21.49 |
0.00 |
41.80 |
3.16 |
4.08 |
10.92 |
11.10 |
0.00 |
88.22 |
5.00 |
0.61 |
291.58 |
70.06 |
15.62 |
6.97 |
39.22 |
24.57 |
1.32 |
106.73 |
0.57 |
15.22 |
5.75 |
0.00 |
0.00 |
7.41 |
33.16 |
110.06 |
8.86 |
0.00 |
2.41 |
9.21 |
0.09 |
0.00 |
0.61 |
121.20 |
Quintana Roo |
23.68 |
30.35 |
82.63 |
24.89 |
0.46 |
0.64 |
10.56 |
0.46 |
0.06 |
0.00 |
21.53 |
21.41 |
7.02 |
1.39 |
21.99 |
0.00 |
0.00 |
6.50 |
72.54 |
104.05 |
1.51 |
1.80 |
58.67 |
5.74 |
4.24 |
1.74 |
3.19 |
0.35 |
168.81 |
1.51 |
8.24 |
174.38 |
16.13 |
68.36 |
10.21 |
118.32 |
21.99 |
9.63 |
175.89 |
0.00 |
15.38 |
21.41 |
2.90 |
0.93 |
0.06 |
42.42 |
78.92 |
8.70 |
0.12 |
7.72 |
8.30 |
2.55 |
20.31 |
0.81 |
37.60 |
San Luis Potosí |
14.34 |
8.51 |
88.73 |
11.44 |
0.66 |
0.31 |
5.69 |
0.42 |
0.00 |
0.00 |
13.33 |
11.90 |
4.26 |
0.49 |
15.18 |
0.00 |
0.00 |
6.91 |
28.05 |
78.08 |
26.10 |
7.89 |
18.18 |
0.66 |
0.52 |
1.19 |
0.14 |
0.14 |
33.74 |
5.34 |
1.88 |
93.51 |
42.98 |
15.77 |
3.56 |
100.66 |
15.07 |
25.37 |
180.84 |
0.00 |
9.18 |
0.03 |
0.84 |
0.31 |
0.00 |
33.74 |
67.09 |
11.62 |
0.10 |
0.00 |
1.99 |
1.47 |
14.97 |
0.03 |
50.90 |
Sinaloa |
15.43 |
12.77 |
44.92 |
11.66 |
0.51 |
0.06 |
11.78 |
0.19 |
0.03 |
0.00 |
25.82 |
7.00 |
1.81 |
0.00 |
2.91 |
1.68 |
0.00 |
0.73 |
11.75 |
69.76 |
0.10 |
0.10 |
0.32 |
0.00 |
0.16 |
0.06 |
0.22 |
0.41 |
17.01 |
0.73 |
0.00 |
30.82 |
8.08 |
3.71 |
1.05 |
33.01 |
6.05 |
0.76 |
100.39 |
0.00 |
1.87 |
1.58 |
0.86 |
0.16 |
0.98 |
6.37 |
20.21 |
1.71 |
0.03 |
0.32 |
1.93 |
0.00 |
4.56 |
0.10 |
2.69 |
Sonora |
28.30 |
7.84 |
29.60 |
15.32 |
0.46 |
0.07 |
5.56 |
0.07 |
0.00 |
0.07 |
9.07 |
10.64 |
1.17 |
0.29 |
4.07 |
1.04 |
0.00 |
1.46 |
27.35 |
58.80 |
1.72 |
0.29 |
6.34 |
6.41 |
0.07 |
0.00 |
0.36 |
0.07 |
18.21 |
2.18 |
1.89 |
86.19 |
9.79 |
2.99 |
1.11 |
39.97 |
5.59 |
5.66 |
102.68 |
0.20 |
21.99 |
2.83 |
0.72 |
0.03 |
1.24 |
58.90 |
10.93 |
4.39 |
0.00 |
0.29 |
0.29 |
0.00 |
1.17 |
0.00 |
24.72 |
Tabasco |
13.45 |
7.15 |
97.31 |
19.05 |
0.43 |
0.08 |
16.13 |
0.86 |
0.00 |
0.00 |
12.44 |
3.89 |
0.00 |
5.71 |
6.73 |
0.00 |
0.00 |
14.07 |
46.81 |
63.41 |
0.31 |
0.31 |
98.55 |
0.00 |
0.31 |
0.16 |
0.54 |
0.04 |
38.68 |
17.26 |
0.00 |
64.22 |
20.18 |
13.45 |
2.60 |
54.85 |
11.00 |
3.50 |
158.54 |
0.00 |
19.79 |
0.51 |
1.13 |
0.08 |
0.00 |
2.02 |
98.78 |
10.61 |
0.12 |
0.47 |
4.51 |
0.00 |
7.23 |
0.04 |
181.28 |
Tamaulipas |
11.75 |
12.05 |
36.87 |
13.92 |
0.16 |
0.66 |
3.78 |
0.33 |
0.00 |
0.00 |
7.45 |
9.23 |
1.34 |
0.74 |
7.42 |
0.00 |
0.00 |
2.03 |
25.48 |
42.10 |
0.22 |
0.00 |
2.03 |
0.00 |
0.00 |
0.00 |
0.00 |
0.05 |
23.31 |
1.37 |
0.03 |
64.98 |
17.94 |
7.31 |
2.36 |
53.88 |
8.38 |
0.49 |
117.05 |
0.00 |
16.30 |
11.59 |
0.63 |
0.03 |
0.00 |
3.59 |
26.98 |
3.81 |
0.00 |
1.10 |
2.38 |
0.11 |
7.20 |
0.00 |
18.44 |
Tlaxcala |
5.22 |
1.96 |
11.01 |
3.91 |
0.07 |
0.00 |
0.43 |
0.80 |
0.00 |
0.00 |
0.43 |
1.45 |
0.14 |
0.07 |
1.67 |
0.00 |
0.00 |
0.00 |
12.17 |
73.84 |
0.29 |
6.09 |
3.77 |
0.07 |
0.14 |
0.07 |
0.07 |
0.07 |
14.35 |
1.52 |
1.88 |
5.36 |
3.19 |
0.43 |
0.07 |
9.78 |
1.67 |
0.87 |
0.58 |
0.00 |
0.94 |
0.07 |
0.00 |
0.65 |
0.00 |
11.88 |
1.09 |
2.39 |
0.14 |
0.07 |
0.36 |
0.00 |
0.00 |
0.00 |
13.91 |
Veracruz de Ignacio de la Llave |
10.28 |
6.70 |
50.90 |
11.97 |
0.71 |
0.19 |
1.42 |
1.10 |
0.00 |
0.00 |
5.57 |
5.11 |
0.19 |
2.14 |
3.01 |
0.11 |
0.01 |
9.82 |
20.89 |
51.59 |
0.90 |
1.60 |
16.07 |
2.27 |
0.55 |
0.50 |
0.55 |
0.27 |
42.64 |
3.74 |
0.68 |
30.26 |
23.98 |
8.38 |
5.76 |
48.21 |
15.69 |
6.72 |
78.23 |
8.43 |
7.90 |
12.79 |
0.23 |
0.05 |
0.00 |
4.78 |
50.18 |
4.40 |
0.01 |
0.97 |
3.15 |
1.50 |
3.10 |
0.06 |
33.76 |
Yucatán |
1.28 |
3.28 |
6.11 |
1.33 |
0.22 |
0.00 |
6.33 |
0.00 |
0.00 |
0.00 |
0.13 |
2.04 |
0.13 |
0.00 |
1.11 |
0.00 |
0.00 |
0.09 |
9.56 |
4.07 |
0.04 |
0.00 |
2.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
3.28 |
0.09 |
0.13 |
0.00 |
11.82 |
10.62 |
0.00 |
39.40 |
0.31 |
8.32 |
18.02 |
0.00 |
4.96 |
1.06 |
0.09 |
0.62 |
0.00 |
4.82 |
59.40 |
1.99 |
0.00 |
0.49 |
0.66 |
0.04 |
0.62 |
0.00 |
27.98 |
Zacatecas |
28.38 |
5.16 |
77.89 |
21.48 |
0.42 |
0.06 |
8.76 |
1.56 |
0.00 |
0.00 |
15.36 |
8.16 |
3.72 |
0.90 |
6.42 |
3.96 |
0.00 |
3.72 |
14.22 |
58.87 |
1.32 |
0.30 |
0.78 |
0.72 |
0.00 |
0.06 |
0.42 |
0.00 |
6.90 |
6.90 |
1.14 |
153.50 |
38.89 |
11.94 |
14.52 |
80.29 |
13.98 |
3.24 |
135.32 |
0.00 |
17.52 |
4.50 |
0.72 |
0.36 |
0.00 |
12.66 |
48.55 |
7.38 |
0.36 |
3.96 |
2.88 |
0.06 |
10.38 |
0.18 |
82.87 |
Posicion de queretaro en 2020 por tipo de delito
posicionAnualporDelito<-c()
for (i in 1:length(losDelitos)) {
a<-tasaDelitoEstado2020[22,i+1]
if(a==0){b=0}else{b<-1+length(tasaDelitoEstado2020[tasaDelitoEstado2020[i+1]>a,i+1])}
posicionAnualporDelito<-c(posicionAnualporDelito,b)
}
posicionesAnualporDelito<-data.frame(losDelitos, posicionAnualporDelito)
posicionesAnualporDelito<-posicionesAnualporDelito[order(posicionesAnualporDelito$posicionAnualporDelito),]
names(posicionesAnualporDelito)<-c("Subtipo de delito", "Posición que ocupa Querétaro a nivel nacional en ese delito")
kable(posicionesAnualporDelito[posicionesAnualporDelito[2]>0,])
13 |
Acoso sexual |
1 |
32 |
Otros robos |
1 |
6 |
Aborto |
2 |
7 |
Otros delitos que atentan contra la vida y la integridad corporal |
2 |
3 |
Lesiones dolosas |
3 |
25 |
Robo en transporte público individual |
3 |
26 |
Robo en transporte público colectivo |
3 |
27 |
Robo en transporte individual |
3 |
54 |
Electorales |
3 |
16 |
Violación equiparada |
4 |
29 |
Robo a negocio |
4 |
33 |
Fraude |
4 |
19 |
Robo a casa habitación |
5 |
21 |
Robo de autopartes |
5 |
35 |
Extorsión |
5 |
37 |
Despojo |
5 |
45 |
Otros delitos contra la sociedad |
5 |
47 |
Amenazas |
5 |
55 |
Otros delitos del Fuero Común |
5 |
15 |
Violación simple |
6 |
20 |
Robo de vehículo automotor |
6 |
30 |
Robo de ganado |
6 |
24 |
Robo a transeúnte en espacio abierto al público |
7 |
40 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
7 |
51 |
Falsificación |
7 |
12 |
Abuso sexual |
8 |
23 |
Robo a transeúnte en vía pública |
8 |
34 |
Abuso de confianza |
8 |
2 |
Homicidio culposo |
9 |
50 |
Falsedad |
9 |
41 |
Incumplimiento de obligaciones de asistencia familiar |
10 |
48 |
Allanamiento de morada |
10 |
4 |
Lesiones culposas |
11 |
42 |
Otros delitos contra la familia |
11 |
31 |
Robo de maquinaria |
13 |
46 |
Narcomenudeo |
13 |
39 |
Violencia familiar |
16 |
8 |
Secuestro |
19 |
52 |
Contra el medio ambiente |
19 |
18 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
20 |
38 |
Otros delitos contra el patrimonio |
23 |
1 |
Homicidio doloso |
25 |
11 |
Otros delitos que atentan contra la libertad personal |
25 |
36 |
Daño a la propiedad |
25 |
5 |
Feminicidio |
30 |
Lugar a nivel nacional de los municipios Queretanos en incidencia delictiva
Top 50 municipios en el año
pop2020<-subset(pop,pop$ANO==2020)
delitos2020<-subset(delitos2,delitos2$Ano==2020)
popMun<-aggregate(pop2020$POB~pop2020$MUN,pop2020,sum)
delMun<-aggregate(delitos2020$value~delitos2020$Cve..Municipio,delitos2020,sum)
delMun$estado<-NA
delMun$municipio<-NA
for (i in 1:nrow(delMun)) {
delMun$estado[i]<-unique(delitos2020$Entidad[delitos2020$Cve..Municipio==delMun$`delitos2020$Cve..Municipio`[i]])
delMun$municipio[i]<-unique(delitos2020$Municipio[delitos2020$Cve..Municipio==delMun$`delitos2020$Cve..Municipio`[i]])
}
delMun$poblacion<-NA
for (i in 1:nrow(delMun)) {
delMun$poblacion[delMun$municipio==popMun$`pop2020$MUN`[i]]<-popMun$`pop2020$POB`[i]
}
delMun$incidencia<-NA
delMun$incidencia<-round(delMun$`delitos2020$value`/delMun$poblacion*100000,2)
delMun<-delMun[order(delMun$incidencia,decreasing = TRUE),]
delMun$posicion<-NA
for (i in 1:nrow(delMun)) {
delMun$posicion[i]<-i
}
names(delMun)[c(1,2,6,7)]<-c("Clave del municipio","Número de carpetas de investigación", "Incidencia por cada 100 mil habitantes","Posición a nivel nacional")
kable(head(delMun[,c(7,3,4,2,5,6)],50),caption = "Top 50 en el año")
Top 50 en el año
72 |
1 |
Colima |
Colima |
5913 |
169188 |
3494.93 |
227 |
2 |
Chihuahua |
Santa Isabel |
127 |
4293 |
2958.30 |
908 |
3 |
Morelos |
Cuernavaca |
9638 |
399426 |
2412.96 |
1821 |
4 |
Quintana Roo |
Tulum |
880 |
36866 |
2387.02 |
1556 |
5 |
Oaxaca |
Tlacolula de Matamoros |
571 |
24027 |
2376.49 |
284 |
6 |
Ciudad de México |
Cuauhtémoc |
18195 |
776217 |
2344.06 |
969 |
7 |
Nuevo León |
Doctor Coss |
43 |
1845 |
2330.62 |
1072 |
8 |
Oaxaca |
Oaxaca de Juárez |
5707 |
258636 |
2206.58 |
16 |
9 |
Baja California |
Playas de Rosarito |
2376 |
107859 |
2202.88 |
501 |
10 |
Hidalgo |
Pachuca de Soto |
6092 |
280312 |
2173.29 |
913 |
11 |
Morelos |
Jojutla |
1314 |
61366 |
2141.25 |
285 |
12 |
Ciudad de México |
Miguel Hidalgo |
8015 |
379624 |
2111.30 |
14 |
13 |
Baja California |
Tecate |
2368 |
113857 |
2079.80 |
333 |
14 |
Guanajuato |
Celaya |
10866 |
530820 |
2047.02 |
77 |
15 |
Colima |
Manzanillo |
4160 |
203306 |
2046.18 |
1343 |
16 |
Oaxaca |
Villa de Etla |
227 |
11426 |
1986.70 |
1807 |
17 |
Querétaro |
Querétaro |
19255 |
976939 |
1970.95 |
907 |
18 |
Morelos |
Cuautla |
4053 |
210529 |
1925.15 |
264 |
19 |
Chihuahua |
Satevó |
65 |
3381 |
1922.51 |
11 |
20 |
Aguascalientes |
San Francisco de los Romo |
983 |
51568 |
1906.22 |
769 |
21 |
México |
Toluca |
17916 |
948950 |
1887.98 |
13 |
22 |
Baja California |
Mexicali |
20260 |
1087478 |
1863.03 |
6 |
23 |
Aguascalientes |
Pabellón de Arteaga |
932 |
50032 |
1862.81 |
2469 |
24 |
Zacatecas |
Zacatecas |
2836 |
155533 |
1823.41 |
576 |
25 |
Jalisco |
Guadalajara |
26811 |
1503505 |
1783.23 |
1820 |
26 |
Quintana Roo |
Solidaridad |
4262 |
239850 |
1776.94 |
773 |
27 |
México |
Valle de Bravo |
1224 |
70192 |
1743.79 |
1851 |
28 |
San Luis Potosí |
San Luis Potosí |
15064 |
870578 |
1730.34 |
1 |
29 |
Aguascalientes |
Aguascalientes |
16508 |
961977 |
1716.05 |
331 |
30 |
Guanajuato |
Apaseo el Grande |
1698 |
99036 |
1714.53 |
732 |
31 |
México |
Papalotla |
74 |
4367 |
1694.53 |
784 |
32 |
México |
Cuautitlán Izcalli |
9726 |
577190 |
1685.06 |
672 |
33 |
México |
Amecameca |
916 |
54548 |
1679.25 |
696 |
34 |
México |
Ecatepec de Morelos |
28668 |
1707754 |
1678.70 |
762 |
35 |
México |
Texcoco |
4380 |
262015 |
1671.66 |
341 |
36 |
Guanajuato |
Guanajuato |
3306 |
198035 |
1669.40 |
788 |
37 |
México |
Tonanitla |
181 |
10960 |
1651.46 |
80 |
38 |
Colima |
Villa de Álvarez |
2493 |
151019 |
1650.79 |
724 |
39 |
México |
Nopaltepec |
159 |
9753 |
1630.27 |
74 |
40 |
Colima |
Coquimatlán |
361 |
22167 |
1628.55 |
688 |
41 |
México |
Chalco |
6464 |
397344 |
1626.80 |
1804 |
42 |
Querétaro |
El Marqués |
2898 |
178672 |
1621.97 |
720 |
43 |
México |
Naucalpan de Juárez |
14741 |
910187 |
1619.56 |
514 |
44 |
Hidalgo |
Tepeapulco |
947 |
58776 |
1611.20 |
910 |
45 |
Morelos |
Huitzilac |
328 |
20372 |
1610.05 |
1639 |
46 |
Puebla |
Esperanza |
251 |
15794 |
1589.21 |
346 |
47 |
Guanajuato |
León |
26577 |
1679610 |
1582.33 |
739 |
48 |
México |
San Mateo Atenco |
1280 |
80903 |
1582.14 |
767 |
49 |
México |
Tlalnepantla de Baz |
11960 |
756537 |
1580.89 |
271 |
50 |
Ciudad de México |
Azcapotzalco |
6403 |
408441 |
1567.67 |
Top 50 municipios en el mes
pop2020<-subset(pop,pop$ANO==2020)
delitos2020Mes<-subset(delitos2,delitos2$Ano==2020 & delitos2$meses== esteMes)
popMun<-aggregate(pop2020$POB~pop2020$MUN,pop2020,sum)
delMunMes<-aggregate(delitos2020Mes$value~delitos2020Mes$Cve..Municipio,delitos2020Mes,sum)
delMunMes$estado<-NA
delMunMes$municipio<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$estado[i]<-unique(delitos2020Mes$Entidad[delitos2020Mes$Cve..Municipio==delMunMes$`delitos2020Mes$Cve..Municipio`[i]])
delMunMes$municipio[i]<-unique(delitos2020Mes$Municipio[delitos2020Mes$Cve..Municipio==delMunMes$`delitos2020Mes$Cve..Municipio`[i]])
}
delMunMes$poblacion<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$poblacion[delMunMes$municipio==popMun$`pop2020$MUN`[i]]<-popMun$`pop2020$POB`[i]
}
delMunMes$incidencia<-NA
delMunMes$incidencia<-round(delMunMes$`delitos2020Mes$value`/delMunMes$poblacion*100000,2)
delMunMes<-delMunMes[order(delMunMes$incidencia,decreasing = TRUE),]
delMunMes$posicion<-NA
for (i in 1:nrow(delMunMes)) {
delMunMes$posicion[i]<-i
}
names(delMunMes)[c(1,2,6,7)]<-c("Clave del municipio","Número de carpetas de investigación", "Incidencia por cada 100 mil habitantes","Posición a nivel nacional")
kable(head(delMunMes[,c(7,3,4,2,5,6)],50),caption = "Top 50 en el mes")
Top 50 en el mes
227 |
1 |
Chihuahua |
Santa Isabel |
27 |
4293 |
628.93 |
72 |
2 |
Colima |
Colima |
704 |
169188 |
416.11 |
1821 |
3 |
Quintana Roo |
Tulum |
137 |
36866 |
371.62 |
732 |
4 |
México |
Papalotla |
15 |
4367 |
343.49 |
2134 |
5 |
Veracruz de Ignacio de la Llave |
Coetzala |
8 |
2373 |
337.13 |
908 |
6 |
Morelos |
Cuernavaca |
1290 |
399426 |
322.96 |
16 |
7 |
Baja California |
Playas de Rosarito |
345 |
107859 |
319.86 |
724 |
8 |
México |
Nopaltepec |
31 |
9753 |
317.85 |
1204 |
9 |
Oaxaca |
San Juan Ihualtepec |
2 |
642 |
311.53 |
773 |
10 |
México |
Valle de Bravo |
217 |
70192 |
309.15 |
1004 |
11 |
Nuevo León |
Vallecillo |
6 |
1942 |
308.96 |
284 |
12 |
Ciudad de México |
Cuauhtémoc |
2390 |
776217 |
307.90 |
14 |
13 |
Baja California |
Tecate |
350 |
113857 |
307.40 |
910 |
14 |
Morelos |
Huitzilac |
61 |
20372 |
299.43 |
1461 |
15 |
Oaxaca |
Santiago Cacaloxtepec |
5 |
1674 |
298.69 |
742 |
16 |
México |
Soyaniquilpan de Juárez |
42 |
14339 |
292.91 |
913 |
17 |
Morelos |
Jojutla |
176 |
61366 |
286.80 |
1214 |
18 |
Oaxaca |
San Juan Mixtepec Distrito 26 |
2 |
701 |
285.31 |
1556 |
19 |
Oaxaca |
Tlacolula de Matamoros |
67 |
24027 |
278.85 |
501 |
20 |
Hidalgo |
Pachuca de Soto |
770 |
280312 |
274.69 |
1072 |
21 |
Oaxaca |
Oaxaca de Juárez |
707 |
258636 |
273.36 |
1324 |
22 |
Oaxaca |
San Pedro Mixtepec Distrito 26 |
3 |
1110 |
270.27 |
1116 |
23 |
Oaxaca |
San Antonio Tepetlapa |
12 |
4460 |
269.06 |
1134 |
24 |
Oaxaca |
San Cristóbal Suchixtlahuaca |
1 |
375 |
266.67 |
1807 |
25 |
Querétaro |
Querétaro |
2589 |
976939 |
265.01 |
285 |
26 |
Ciudad de México |
Miguel Hidalgo |
994 |
379624 |
261.84 |
907 |
27 |
Morelos |
Cuautla |
550 |
210529 |
261.25 |
769 |
28 |
México |
Toluca |
2455 |
948950 |
258.71 |
1255 |
29 |
Oaxaca |
San Mateo Etlatongo |
3 |
1182 |
253.81 |
1343 |
30 |
Oaxaca |
Villa de Etla |
29 |
11426 |
253.81 |
1820 |
31 |
Quintana Roo |
Solidaridad |
596 |
239850 |
248.49 |
77 |
32 |
Colima |
Manzanillo |
504 |
203306 |
247.90 |
11 |
33 |
Aguascalientes |
San Francisco de los Romo |
125 |
51568 |
242.40 |
13 |
34 |
Baja California |
Mexicali |
2628 |
1087478 |
241.66 |
762 |
35 |
México |
Texcoco |
632 |
262015 |
241.21 |
1005 |
36 |
Nuevo León |
Villaldama |
11 |
4567 |
240.86 |
679 |
37 |
México |
Axapusco |
72 |
30040 |
239.68 |
784 |
38 |
México |
Cuautitlán Izcalli |
1373 |
577190 |
237.88 |
1145 |
39 |
Oaxaca |
San Francisco Chindúa |
2 |
841 |
237.81 |
1481 |
40 |
Oaxaca |
Santiago Miltepec |
1 |
425 |
235.29 |
1722 |
41 |
Puebla |
Santa Catarina Tlaltempan |
2 |
853 |
234.47 |
576 |
42 |
Jalisco |
Guadalajara |
3524 |
1503505 |
234.39 |
2469 |
43 |
Zacatecas |
Zacatecas |
363 |
155533 |
233.39 |
788 |
44 |
México |
Tonanitla |
25 |
10960 |
228.10 |
717 |
45 |
México |
Metepec |
589 |
258563 |
227.80 |
720 |
46 |
México |
Naucalpan de Juárez |
2066 |
910187 |
226.99 |
1977 |
47 |
Tabasco |
Centro |
1678 |
739611 |
226.88 |
986 |
48 |
Nuevo León |
Lampazos de Naranjo |
13 |
5783 |
224.80 |
333 |
49 |
Guanajuato |
Celaya |
1169 |
530820 |
220.23 |
696 |
50 |
México |
Ecatepec de Morelos |
3737 |
1707754 |
218.83 |
Posición de los municipios de Queretaro en el año
kable(delMun[delMun$estado=="Querétaro",c(7,3,4,2,5,6)])
1807 |
17 |
Querétaro |
Querétaro |
19255 |
976939 |
1970.95 |
1804 |
42 |
Querétaro |
El Marqués |
2898 |
178672 |
1621.97 |
1809 |
74 |
Querétaro |
San Juan del Río |
4545 |
316169 |
1437.52 |
1799 |
128 |
Querétaro |
Corregidora |
2492 |
208076 |
1197.64 |
1801 |
183 |
Querétaro |
Huimilpan |
456 |
42305 |
1077.89 |
1810 |
203 |
Querétaro |
Tequisquiapan |
823 |
78742 |
1045.19 |
1802 |
268 |
Querétaro |
Jalpan de Serra |
282 |
29625 |
951.90 |
1805 |
273 |
Querétaro |
Pedro Escobedo |
721 |
76411 |
943.58 |
1800 |
297 |
Querétaro |
Ezequiel Montes |
417 |
45877 |
908.95 |
1794 |
319 |
Querétaro |
Amealco de Bonfil |
598 |
68441 |
873.75 |
1798 |
359 |
Querétaro |
Colón |
560 |
69112 |
810.28 |
1797 |
548 |
Querétaro |
Cadereyta de Montes |
498 |
76829 |
648.19 |
1806 |
605 |
Querétaro |
Peñamiller |
133 |
21988 |
604.88 |
1795 |
656 |
Querétaro |
Pinal de Amoles |
159 |
28189 |
564.05 |
1796 |
691 |
Querétaro |
Arroyo Seco |
80 |
14789 |
540.94 |
1803 |
728 |
Querétaro |
Landa de Matamoros |
106 |
20313 |
521.83 |
1808 |
748 |
Querétaro |
San Joaquín |
53 |
10323 |
513.42 |
1811 |
859 |
Querétaro |
Tolimán |
190 |
42391 |
448.21 |
1812 |
2463 |
Querétaro |
No Especificado |
81 |
NA |
NA |
Posición de los municipios de Queretaro en el mes
kable(delMunMes[delMunMes$estado=="Querétaro",c(7,3,4,2,5,6)])
1807 |
25 |
Querétaro |
Querétaro |
2589 |
976939 |
265.01 |
1804 |
74 |
Querétaro |
El Marqués |
361 |
178672 |
202.05 |
1809 |
79 |
Querétaro |
San Juan del Río |
625 |
316169 |
197.68 |
1799 |
198 |
Querétaro |
Corregidora |
308 |
208076 |
148.02 |
1801 |
227 |
Querétaro |
Huimilpan |
60 |
42305 |
141.83 |
1802 |
228 |
Querétaro |
Jalpan de Serra |
42 |
29625 |
141.77 |
1805 |
234 |
Querétaro |
Pedro Escobedo |
107 |
76411 |
140.03 |
1810 |
266 |
Querétaro |
Tequisquiapan |
105 |
78742 |
133.35 |
1794 |
407 |
Querétaro |
Amealco de Bonfil |
76 |
68441 |
111.04 |
1800 |
501 |
Querétaro |
Ezequiel Montes |
44 |
45877 |
95.91 |
1806 |
508 |
Querétaro |
Peñamiller |
21 |
21988 |
95.51 |
1798 |
509 |
Querétaro |
Colón |
66 |
69112 |
95.50 |
1797 |
719 |
Querétaro |
Cadereyta de Montes |
56 |
76829 |
72.89 |
1795 |
749 |
Querétaro |
Pinal de Amoles |
20 |
28189 |
70.95 |
1796 |
791 |
Querétaro |
Arroyo Seco |
10 |
14789 |
67.62 |
1803 |
825 |
Querétaro |
Landa de Matamoros |
13 |
20313 |
64.00 |
1808 |
903 |
Querétaro |
San Joaquín |
6 |
10323 |
58.12 |
1811 |
987 |
Querétaro |
Tolimán |
22 |
42391 |
51.90 |
1812 |
2463 |
Querétaro |
No Especificado |
14 |
NA |
NA |
Delitos en Querétaro
delitosQRO2020<-subset(delitos2, delitos2$Clave_Ent==22)
delitosQRO2020$periodo<-NA
delitosQRO2020$mes<-NA
m<-unique(delitosQRO2020$meses)
for (i in m) {
delitosQRO2020$mes[delitosQRO2020$meses==i]<-switch (i,"Enero"="01","Febrero"="02","Marzo"="03", "Abril"="04","Mayo"="05","Junio"="06","Julio"="07","Agosto"="08","Septiembre"="09","Octubre"="10","Noviembre"="11", "Diciembre"="12")
}
delitosQRO2020$periodo<-paste0(delitosQRO2020$Ano,delitosQRO2020$mes)
catalogoDelitos<-as.data.frame(sort(unique(delitosQRO2020$Subtipo.de.delito)))
losMeses2020<-sort(unique(delitosQRO2020$periodo))
for (i in 1:length(losMeses2020)){
a<-subset(delitosQRO2020, delitosQRO2020$periodo==losMeses2020[i])
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
catalogoDelitos<-cbind(catalogoDelitos,b)
}
names(catalogoDelitos)<-c("Delito", losMeses2020)
stop1<-0
dondeBuscar<-colSums(catalogoDelitos[2:ncol(catalogoDelitos)])
for (i in 1:length(dondeBuscar)) {
if(dondeBuscar[i]==0){
stop1<-i;
break;
}
}
if(stop1==0){stop1=ncol(catalogoDelitos)}
stop2=stop1-12
#Superior al mismo périodo del año anterior
comparaAniAnterior<-catalogoDelitos[,c(1,stop2,stop1)]
comparaAniAnteriorTasa<-comparaAniAnterior
comparaAniAnteriorTasa[2]<-round(comparaAniAnteriorTasa[2]/ent$year2019[22]*1000,3)
comparaAniAnteriorTasa[3]<-round(comparaAniAnteriorTasa[3]/ent$year2020[22]*1000,3)
names(comparaAniAnteriorTasa)<-c("Delito", "Tasa 2019", "Tasa 2020")
comparaAniAnteriorTasa$cambio<-NA
comparaAniAnteriorTasa$cambio<-round((comparaAniAnteriorTasa[3]-comparaAniAnteriorTasa[2])/comparaAniAnteriorTasa[2],2)
aumentoContraUnAno<-comparaAniAnteriorTasa$Delito[comparaAniAnteriorTasa$cambio>0 & !is.na(comparaAniAnteriorTasa$cambio)]
maximoAbsoluto<-apply(X = catalogoDelitos[,2:stop1], MARGIN = 1,max)
estePeriodo<-catalogoDelitos[,stop1]
DelitosEnMaximoAbsoluto<-catalogoDelitos$Delito[estePeriodo!=0 & estePeriodo>=maximoAbsoluto]
names(DelitosEnMaximoAbsoluto)<-c(paste0("Delitos que alcanzan su máximo histórico en ",esteMes ,"(Números absolutos)"))
Delitos que aumentaron entre Julio y Agosto
cambioMes<-cbind(catalogoDelitos[,1], catalogoDelitos[,(stop1-1):stop1])
cambioMes$tasadeCambio<-NA
cambioMes$tasadeCambio<-round((cambioMes[,3]-cambioMes[,2])/cambioMes[,2]*100,2)
cambioMes<-cambioMes[order(cambioMes$tasadeCambio,decreasing = TRUE),]
cambioMes1<-cambioMes[!is.infinite(cambioMes[,4]) & !is.nan(cambioMes[,4]), ]
cambioMes1<-cambioMes1[order(cambioMes1[3], decreasing = TRUE),]
names(cambioMes1)<-c("Delito", paste0("Carpetas en ", anterior), paste0("Carpetas en ", esteMes),"Tasa de cambio (%)")
kable(cambioMes1)
34 |
Otros robos |
811 |
896 |
10.48 |
25 |
Lesiones dolosas |
477 |
393 |
-17.61 |
6 |
Amenazas |
322 |
345 |
7.14 |
30 |
Otros delitos del Fuero Común |
302 |
302 |
0.00 |
45 |
Robo de vehículo automotor |
339 |
301 |
-11.21 |
38 |
Robo a negocio |
259 |
293 |
13.13 |
55 |
Violencia familiar |
342 |
292 |
-14.62 |
18 |
Fraude |
239 |
278 |
16.32 |
36 |
Robo a casa habitación |
227 |
227 |
0.00 |
40 |
Robo a transeúnte en vía pública |
133 |
141 |
6.02 |
9 |
Daño a la propiedad |
104 |
127 |
22.12 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
76 |
106 |
39.47 |
26 |
Narcomenudeo |
80 |
93 |
16.25 |
11 |
Despojo |
104 |
86 |
-17.31 |
24 |
Lesiones culposas |
58 |
64 |
10.34 |
42 |
Robo de autopartes |
52 |
62 |
19.23 |
4 |
Acoso sexual |
48 |
56 |
16.67 |
2 |
Abuso de confianza |
54 |
48 |
-11.11 |
23 |
Incumplimiento de obligaciones de asistencia familiar |
57 |
46 |
-19.30 |
3 |
Abuso sexual |
56 |
42 |
-25.00 |
16 |
Falsificación |
18 |
38 |
111.11 |
29 |
Otros delitos contra la sociedad |
23 |
31 |
34.78 |
53 |
Violación simple |
35 |
31 |
-11.43 |
46 |
Robo en transporte individual |
50 |
30 |
-40.00 |
5 |
Allanamiento de morada |
29 |
29 |
0.00 |
47 |
Robo en transporte público colectivo |
35 |
22 |
-37.14 |
52 |
Violación equiparada |
9 |
21 |
133.33 |
20 |
Homicidio doloso |
15 |
21 |
40.00 |
14 |
Extorsión |
18 |
20 |
11.11 |
43 |
Robo de ganado |
10 |
19 |
90.00 |
28 |
Otros delitos contra la familia |
26 |
19 |
-26.92 |
19 |
Homicidio culposo |
24 |
17 |
-29.17 |
48 |
Robo en transporte público individual |
7 |
10 |
42.86 |
39 |
Robo a transeúnte en espacio abierto al público |
7 |
9 |
28.57 |
31 |
Otros delitos que atentan contra la libertad personal |
4 |
6 |
50.00 |
27 |
Otros delitos contra el patrimonio |
5 |
5 |
0.00 |
15 |
Falsedad |
8 |
5 |
-37.50 |
1 |
Aborto |
5 |
4 |
-20.00 |
54 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
2 |
3 |
50.00 |
12 |
Electorales |
3 |
2 |
-33.33 |
32 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
7 |
2 |
-71.43 |
44 |
Robo de maquinaria |
4 |
0 |
-100.00 |
49 |
Secuestro |
1 |
0 |
-100.00 |
Querétaro: Los delitos que han alcanzado su máximo histórico (en números absolutos) en este mes
kable(DelitosEnMaximoAbsoluto)
Acoso sexual |
Feminicidio |
Fraude |
Otros delitos que atentan contra la vida y la integridad corporal |
Violación equiparada |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
Querétaro: Los delitos más frecuentes en Agosto
elMes<-catalogoDelitos[,c(1,stop1)]
elMes<-elMes[order(elMes[2], decreasing =TRUE),]
names(elMes)<-c(paste0("Delitos más frecuentes en ",esteMes),esteMes)
kable(elMes)
34 |
Otros robos |
896 |
25 |
Lesiones dolosas |
393 |
6 |
Amenazas |
345 |
30 |
Otros delitos del Fuero Común |
302 |
45 |
Robo de vehículo automotor |
301 |
38 |
Robo a negocio |
293 |
55 |
Violencia familiar |
292 |
18 |
Fraude |
278 |
36 |
Robo a casa habitación |
227 |
40 |
Robo a transeúnte en vía pública |
141 |
9 |
Daño a la propiedad |
127 |
33 |
Otros delitos que atentan contra la vida y la integridad corporal |
106 |
26 |
Narcomenudeo |
93 |
11 |
Despojo |
86 |
24 |
Lesiones culposas |
64 |
42 |
Robo de autopartes |
62 |
4 |
Acoso sexual |
56 |
2 |
Abuso de confianza |
48 |
23 |
Incumplimiento de obligaciones de asistencia familiar |
46 |
3 |
Abuso sexual |
42 |
16 |
Falsificación |
38 |
29 |
Otros delitos contra la sociedad |
31 |
53 |
Violación simple |
31 |
46 |
Robo en transporte individual |
30 |
5 |
Allanamiento de morada |
29 |
47 |
Robo en transporte público colectivo |
22 |
20 |
Homicidio doloso |
21 |
52 |
Violación equiparada |
21 |
14 |
Extorsión |
20 |
28 |
Otros delitos contra la familia |
19 |
43 |
Robo de ganado |
19 |
19 |
Homicidio culposo |
17 |
48 |
Robo en transporte público individual |
10 |
39 |
Robo a transeúnte en espacio abierto al público |
9 |
31 |
Otros delitos que atentan contra la libertad personal |
6 |
15 |
Falsedad |
5 |
27 |
Otros delitos contra el patrimonio |
5 |
1 |
Aborto |
4 |
54 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
3 |
12 |
Electorales |
2 |
17 |
Feminicidio |
2 |
32 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
2 |
7 |
Contra el medio ambiente |
1 |
8 |
Corrupción de menores |
0 |
10 |
Delitos cometidos por servidores públicos |
0 |
13 |
Evasión de presos |
0 |
21 |
Hostigamiento sexual |
0 |
22 |
Incesto |
0 |
35 |
Rapto |
0 |
37 |
Robo a institución bancaria |
0 |
41 |
Robo a transportista |
0 |
44 |
Robo de maquinaria |
0 |
49 |
Secuestro |
0 |
50 |
Tráfico de menores |
0 |
51 |
Trata de personas |
0 |
Serie Mensual por delito en Querétaro
kable(catalogoDelitos)
Aborto |
0 |
2 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2 |
0 |
1 |
1 |
0 |
0 |
0 |
2 |
1 |
0 |
1 |
0 |
0 |
4 |
1 |
1 |
0 |
2 |
3 |
1 |
1 |
0 |
1 |
0 |
0 |
2 |
4 |
0 |
3 |
1 |
0 |
2 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
3 |
2 |
3 |
1 |
3 |
4 |
0 |
3 |
3 |
1 |
3 |
0 |
5 |
4 |
0 |
0 |
0 |
0 |
Abuso de confianza |
36 |
23 |
30 |
33 |
40 |
39 |
60 |
32 |
39 |
41 |
54 |
32 |
44 |
31 |
52 |
42 |
54 |
54 |
44 |
35 |
67 |
52 |
39 |
50 |
46 |
59 |
49 |
54 |
60 |
44 |
60 |
61 |
64 |
46 |
48 |
44 |
42 |
53 |
55 |
64 |
58 |
45 |
68 |
55 |
44 |
49 |
46 |
43 |
53 |
64 |
55 |
44 |
53 |
48 |
75 |
59 |
61 |
69 |
47 |
53 |
54 |
48 |
55 |
38 |
26 |
33 |
54 |
48 |
0 |
0 |
0 |
0 |
Abuso sexual |
20 |
13 |
14 |
25 |
25 |
17 |
21 |
23 |
20 |
29 |
26 |
17 |
22 |
14 |
16 |
20 |
28 |
24 |
31 |
28 |
34 |
25 |
30 |
22 |
27 |
25 |
34 |
27 |
43 |
35 |
30 |
23 |
27 |
32 |
32 |
23 |
19 |
29 |
35 |
43 |
31 |
39 |
46 |
27 |
37 |
34 |
39 |
34 |
29 |
47 |
48 |
54 |
59 |
44 |
50 |
57 |
34 |
39 |
39 |
40 |
34 |
40 |
69 |
22 |
47 |
45 |
56 |
42 |
0 |
0 |
0 |
0 |
Acoso sexual |
5 |
1 |
0 |
0 |
3 |
3 |
0 |
4 |
1 |
2 |
2 |
2 |
1 |
4 |
3 |
6 |
4 |
5 |
6 |
2 |
2 |
6 |
0 |
1 |
1 |
4 |
1 |
2 |
7 |
3 |
3 |
9 |
4 |
4 |
4 |
2 |
2 |
16 |
9 |
18 |
9 |
10 |
13 |
13 |
11 |
12 |
14 |
1 |
11 |
14 |
14 |
19 |
17 |
19 |
22 |
37 |
31 |
33 |
44 |
33 |
33 |
54 |
52 |
54 |
43 |
50 |
48 |
56 |
0 |
0 |
0 |
0 |
Allanamiento de morada |
10 |
10 |
9 |
5 |
12 |
6 |
5 |
4 |
5 |
9 |
16 |
10 |
10 |
10 |
10 |
12 |
9 |
11 |
15 |
16 |
13 |
20 |
11 |
12 |
11 |
17 |
17 |
11 |
17 |
15 |
12 |
13 |
15 |
18 |
12 |
14 |
15 |
10 |
16 |
18 |
27 |
26 |
31 |
13 |
23 |
14 |
8 |
31 |
26 |
20 |
26 |
25 |
25 |
20 |
39 |
32 |
17 |
28 |
30 |
27 |
23 |
28 |
22 |
24 |
26 |
21 |
29 |
29 |
0 |
0 |
0 |
0 |
Amenazas |
78 |
81 |
95 |
94 |
88 |
85 |
103 |
98 |
95 |
102 |
103 |
86 |
71 |
67 |
89 |
106 |
113 |
189 |
187 |
223 |
159 |
184 |
148 |
174 |
169 |
186 |
176 |
189 |
294 |
231 |
208 |
281 |
241 |
245 |
230 |
215 |
233 |
210 |
287 |
263 |
315 |
276 |
315 |
297 |
273 |
341 |
278 |
273 |
319 |
307 |
333 |
376 |
417 |
344 |
399 |
391 |
308 |
367 |
353 |
328 |
342 |
390 |
380 |
251 |
201 |
278 |
322 |
345 |
0 |
0 |
0 |
0 |
Contra el medio ambiente |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
Corrupción de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Daño a la propiedad |
167 |
153 |
186 |
178 |
172 |
168 |
158 |
132 |
165 |
143 |
186 |
174 |
155 |
183 |
159 |
185 |
213 |
391 |
430 |
461 |
477 |
402 |
394 |
412 |
407 |
387 |
432 |
395 |
477 |
447 |
385 |
455 |
412 |
522 |
437 |
444 |
478 |
395 |
433 |
426 |
436 |
510 |
487 |
462 |
473 |
465 |
430 |
426 |
451 |
436 |
484 |
481 |
506 |
452 |
272 |
116 |
120 |
112 |
102 |
128 |
113 |
128 |
105 |
115 |
96 |
106 |
104 |
127 |
0 |
0 |
0 |
0 |
Delitos cometidos por servidores públicos |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Despojo |
43 |
40 |
45 |
51 |
35 |
33 |
48 |
38 |
34 |
38 |
28 |
50 |
41 |
47 |
47 |
38 |
36 |
46 |
38 |
49 |
41 |
46 |
37 |
45 |
36 |
48 |
51 |
55 |
56 |
64 |
51 |
61 |
51 |
41 |
54 |
29 |
45 |
57 |
65 |
47 |
68 |
60 |
60 |
72 |
61 |
78 |
58 |
49 |
69 |
71 |
83 |
72 |
73 |
73 |
81 |
66 |
65 |
69 |
66 |
62 |
66 |
77 |
58 |
45 |
53 |
71 |
104 |
86 |
0 |
0 |
0 |
0 |
Electorales |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
3 |
0 |
0 |
5 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
3 |
26 |
12 |
2 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
0 |
3 |
0 |
0 |
3 |
3 |
2 |
0 |
0 |
0 |
0 |
Evasión de presos |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Extorsión |
2 |
0 |
1 |
0 |
0 |
0 |
0 |
3 |
0 |
0 |
0 |
0 |
4 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
3 |
5 |
4 |
5 |
7 |
13 |
4 |
13 |
4 |
13 |
7 |
12 |
12 |
10 |
14 |
33 |
20 |
13 |
23 |
19 |
38 |
35 |
14 |
20 |
16 |
14 |
26 |
16 |
25 |
15 |
21 |
18 |
18 |
20 |
0 |
0 |
0 |
0 |
Falsedad |
1 |
2 |
2 |
4 |
5 |
5 |
3 |
2 |
5 |
2 |
4 |
2 |
6 |
3 |
18 |
8 |
9 |
8 |
2 |
10 |
11 |
7 |
6 |
7 |
4 |
4 |
4 |
10 |
14 |
7 |
7 |
6 |
6 |
7 |
3 |
7 |
4 |
6 |
6 |
11 |
13 |
6 |
5 |
12 |
8 |
9 |
4 |
4 |
7 |
6 |
8 |
12 |
4 |
11 |
6 |
11 |
13 |
8 |
8 |
7 |
9 |
13 |
9 |
3 |
6 |
2 |
8 |
5 |
0 |
0 |
0 |
0 |
Falsificación |
65 |
40 |
48 |
40 |
59 |
63 |
47 |
44 |
61 |
56 |
63 |
56 |
48 |
40 |
42 |
45 |
52 |
45 |
64 |
52 |
33 |
44 |
47 |
44 |
33 |
38 |
48 |
28 |
43 |
34 |
40 |
25 |
30 |
51 |
33 |
35 |
34 |
35 |
27 |
56 |
56 |
56 |
57 |
52 |
60 |
70 |
38 |
39 |
65 |
42 |
61 |
73 |
63 |
58 |
73 |
49 |
57 |
68 |
46 |
40 |
47 |
36 |
29 |
11 |
11 |
20 |
18 |
38 |
0 |
0 |
0 |
0 |
Feminicidio |
2 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
0 |
2 |
1 |
1 |
0 |
0 |
1 |
2 |
1 |
2 |
0 |
2 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
0 |
0 |
0 |
0 |
Fraude |
115 |
113 |
138 |
114 |
134 |
138 |
134 |
106 |
110 |
124 |
130 |
130 |
104 |
106 |
117 |
141 |
172 |
153 |
153 |
167 |
167 |
132 |
161 |
119 |
157 |
171 |
181 |
159 |
192 |
186 |
152 |
188 |
143 |
195 |
184 |
126 |
143 |
157 |
211 |
156 |
189 |
172 |
189 |
209 |
185 |
182 |
174 |
152 |
189 |
164 |
221 |
207 |
222 |
180 |
257 |
224 |
206 |
210 |
192 |
208 |
242 |
192 |
170 |
123 |
153 |
200 |
239 |
278 |
0 |
0 |
0 |
0 |
Homicidio culposo |
23 |
29 |
24 |
20 |
30 |
25 |
24 |
20 |
30 |
25 |
32 |
34 |
22 |
23 |
30 |
28 |
33 |
23 |
33 |
24 |
18 |
23 |
21 |
25 |
20 |
27 |
18 |
30 |
28 |
26 |
24 |
27 |
27 |
28 |
14 |
27 |
30 |
20 |
30 |
27 |
25 |
34 |
29 |
21 |
22 |
18 |
33 |
21 |
25 |
32 |
33 |
27 |
28 |
20 |
23 |
26 |
27 |
21 |
34 |
31 |
24 |
27 |
22 |
24 |
26 |
23 |
24 |
17 |
0 |
0 |
0 |
0 |
Homicidio doloso |
9 |
9 |
12 |
11 |
11 |
10 |
12 |
13 |
10 |
13 |
13 |
8 |
12 |
9 |
12 |
8 |
14 |
7 |
7 |
6 |
15 |
8 |
12 |
8 |
12 |
12 |
14 |
21 |
8 |
21 |
10 |
20 |
19 |
14 |
9 |
15 |
14 |
10 |
15 |
12 |
14 |
16 |
14 |
18 |
22 |
7 |
16 |
22 |
13 |
16 |
18 |
13 |
15 |
11 |
17 |
17 |
21 |
9 |
12 |
15 |
11 |
11 |
26 |
11 |
18 |
8 |
15 |
21 |
0 |
0 |
0 |
0 |
Hostigamiento sexual |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incesto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Incumplimiento de obligaciones de asistencia familiar |
67 |
75 |
59 |
61 |
64 |
66 |
67 |
85 |
66 |
79 |
76 |
47 |
58 |
57 |
79 |
69 |
92 |
50 |
103 |
75 |
74 |
63 |
63 |
46 |
63 |
50 |
84 |
77 |
78 |
87 |
76 |
68 |
85 |
79 |
57 |
44 |
69 |
72 |
50 |
63 |
52 |
74 |
38 |
56 |
43 |
64 |
53 |
29 |
43 |
39 |
73 |
53 |
63 |
66 |
58 |
71 |
52 |
82 |
52 |
45 |
75 |
71 |
60 |
11 |
9 |
18 |
57 |
46 |
0 |
0 |
0 |
0 |
Lesiones culposas |
37 |
42 |
45 |
45 |
42 |
45 |
32 |
37 |
44 |
53 |
51 |
68 |
44 |
46 |
45 |
59 |
41 |
83 |
70 |
72 |
83 |
82 |
95 |
64 |
76 |
53 |
71 |
71 |
78 |
61 |
52 |
60 |
70 |
72 |
62 |
67 |
59 |
65 |
75 |
74 |
81 |
69 |
83 |
85 |
70 |
91 |
77 |
64 |
78 |
70 |
71 |
65 |
80 |
69 |
77 |
91 |
105 |
87 |
83 |
96 |
56 |
80 |
91 |
63 |
40 |
73 |
58 |
64 |
0 |
0 |
0 |
0 |
Lesiones dolosas |
176 |
194 |
205 |
244 |
236 |
240 |
235 |
246 |
227 |
245 |
290 |
266 |
172 |
173 |
219 |
239 |
286 |
322 |
320 |
405 |
357 |
366 |
304 |
409 |
367 |
315 |
366 |
356 |
561 |
458 |
389 |
422 |
375 |
399 |
355 |
371 |
325 |
335 |
448 |
459 |
504 |
432 |
519 |
419 |
421 |
509 |
400 |
423 |
402 |
413 |
503 |
483 |
614 |
522 |
499 |
448 |
498 |
461 |
380 |
467 |
351 |
416 |
488 |
432 |
327 |
397 |
477 |
393 |
0 |
0 |
0 |
0 |
Narcomenudeo |
21 |
22 |
18 |
19 |
18 |
18 |
10 |
7 |
10 |
30 |
30 |
21 |
62 |
84 |
79 |
63 |
42 |
61 |
72 |
74 |
72 |
68 |
71 |
78 |
97 |
74 |
91 |
66 |
81 |
84 |
91 |
70 |
58 |
67 |
82 |
81 |
85 |
79 |
85 |
98 |
92 |
83 |
106 |
112 |
97 |
115 |
88 |
109 |
139 |
133 |
138 |
139 |
165 |
158 |
152 |
119 |
117 |
126 |
107 |
86 |
133 |
121 |
102 |
77 |
78 |
72 |
80 |
93 |
0 |
0 |
0 |
0 |
Otros delitos contra el patrimonio |
2 |
0 |
3 |
4 |
4 |
2 |
4 |
2 |
2 |
2 |
5 |
3 |
1 |
3 |
2 |
2 |
6 |
1 |
2 |
3 |
3 |
2 |
2 |
1 |
1 |
5 |
5 |
4 |
3 |
2 |
4 |
2 |
5 |
3 |
1 |
3 |
1 |
4 |
4 |
5 |
6 |
1 |
3 |
3 |
3 |
4 |
2 |
1 |
1 |
3 |
9 |
2 |
3 |
5 |
7 |
4 |
6 |
4 |
1 |
3 |
4 |
2 |
5 |
3 |
2 |
4 |
5 |
5 |
0 |
0 |
0 |
0 |
Otros delitos contra la familia |
3 |
4 |
3 |
6 |
5 |
4 |
5 |
4 |
10 |
8 |
4 |
10 |
4 |
8 |
5 |
15 |
11 |
4 |
10 |
14 |
8 |
12 |
10 |
11 |
9 |
5 |
11 |
13 |
17 |
12 |
13 |
23 |
11 |
14 |
10 |
26 |
21 |
17 |
16 |
14 |
16 |
14 |
19 |
26 |
15 |
18 |
18 |
17 |
12 |
6 |
13 |
17 |
28 |
15 |
20 |
29 |
15 |
18 |
14 |
20 |
14 |
13 |
22 |
12 |
11 |
14 |
26 |
19 |
0 |
0 |
0 |
0 |
Otros delitos contra la sociedad |
12 |
8 |
14 |
9 |
5 |
13 |
8 |
6 |
10 |
11 |
4 |
8 |
12 |
7 |
18 |
15 |
16 |
13 |
8 |
7 |
9 |
6 |
9 |
4 |
6 |
12 |
11 |
14 |
14 |
6 |
13 |
12 |
16 |
9 |
9 |
10 |
3 |
17 |
11 |
7 |
16 |
11 |
14 |
5 |
10 |
9 |
13 |
16 |
8 |
9 |
11 |
15 |
12 |
11 |
7 |
8 |
25 |
39 |
23 |
15 |
15 |
17 |
29 |
16 |
25 |
13 |
23 |
31 |
0 |
0 |
0 |
0 |
Otros delitos del Fuero Común |
106 |
112 |
121 |
96 |
107 |
142 |
130 |
120 |
114 |
136 |
166 |
163 |
122 |
133 |
163 |
148 |
202 |
233 |
268 |
245 |
267 |
269 |
236 |
275 |
252 |
259 |
317 |
252 |
304 |
350 |
300 |
323 |
287 |
321 |
262 |
305 |
302 |
348 |
388 |
382 |
366 |
355 |
349 |
339 |
373 |
428 |
318 |
346 |
376 |
364 |
359 |
397 |
469 |
424 |
465 |
461 |
414 |
453 |
401 |
339 |
403 |
405 |
399 |
296 |
328 |
328 |
302 |
302 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la libertad personal |
3 |
1 |
2 |
3 |
1 |
8 |
2 |
3 |
2 |
3 |
3 |
2 |
3 |
0 |
2 |
2 |
1 |
2 |
3 |
2 |
1 |
6 |
3 |
1 |
8 |
3 |
3 |
4 |
0 |
8 |
6 |
0 |
1 |
7 |
1 |
3 |
1 |
2 |
2 |
2 |
1 |
2 |
1 |
4 |
4 |
3 |
5 |
3 |
3 |
1 |
4 |
3 |
10 |
5 |
7 |
4 |
7 |
2 |
4 |
2 |
4 |
8 |
15 |
13 |
7 |
7 |
4 |
6 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la libertad y la seguridad sexual |
7 |
1 |
7 |
4 |
6 |
6 |
2 |
2 |
4 |
4 |
6 |
4 |
3 |
4 |
4 |
2 |
9 |
1 |
5 |
8 |
1 |
2 |
2 |
4 |
1 |
4 |
5 |
2 |
6 |
1 |
7 |
7 |
2 |
3 |
6 |
3 |
4 |
7 |
2 |
3 |
2 |
1 |
2 |
2 |
3 |
2 |
0 |
1 |
3 |
4 |
6 |
4 |
6 |
3 |
5 |
5 |
5 |
5 |
2 |
3 |
6 |
7 |
2 |
5 |
4 |
3 |
7 |
2 |
0 |
0 |
0 |
0 |
Otros delitos que atentan contra la vida y la integridad corporal |
50 |
36 |
60 |
58 |
47 |
52 |
44 |
44 |
53 |
72 |
59 |
84 |
24 |
35 |
44 |
40 |
48 |
74 |
55 |
81 |
66 |
54 |
56 |
49 |
54 |
70 |
69 |
67 |
61 |
63 |
58 |
61 |
48 |
83 |
63 |
67 |
64 |
54 |
66 |
59 |
80 |
64 |
62 |
55 |
57 |
61 |
66 |
79 |
67 |
70 |
72 |
76 |
73 |
72 |
95 |
84 |
80 |
85 |
80 |
86 |
77 |
93 |
91 |
76 |
80 |
83 |
76 |
106 |
0 |
0 |
0 |
0 |
Otros robos |
573 |
539 |
543 |
542 |
560 |
557 |
534 |
563 |
580 |
627 |
556 |
494 |
556 |
480 |
559 |
591 |
551 |
649 |
719 |
788 |
731 |
822 |
724 |
649 |
716 |
710 |
797 |
710 |
777 |
877 |
805 |
898 |
887 |
912 |
946 |
844 |
816 |
795 |
866 |
887 |
926 |
947 |
903 |
929 |
865 |
931 |
800 |
828 |
963 |
940 |
1015 |
942 |
884 |
938 |
967 |
978 |
871 |
1029 |
950 |
1018 |
938 |
911 |
937 |
736 |
732 |
686 |
811 |
896 |
0 |
0 |
0 |
0 |
Rapto |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a casa habitación |
165 |
161 |
215 |
220 |
236 |
202 |
184 |
212 |
223 |
192 |
201 |
206 |
194 |
204 |
213 |
218 |
213 |
285 |
292 |
317 |
289 |
383 |
309 |
365 |
308 |
291 |
351 |
282 |
304 |
331 |
327 |
327 |
327 |
345 |
356 |
303 |
369 |
271 |
344 |
331 |
312 |
270 |
352 |
361 |
357 |
320 |
282 |
360 |
340 |
260 |
278 |
303 |
320 |
265 |
303 |
290 |
266 |
267 |
264 |
253 |
317 |
261 |
218 |
188 |
180 |
190 |
227 |
227 |
0 |
0 |
0 |
0 |
Robo a institución bancaria |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo a negocio |
177 |
129 |
192 |
191 |
140 |
152 |
153 |
157 |
136 |
151 |
140 |
132 |
154 |
132 |
154 |
152 |
185 |
220 |
294 |
244 |
249 |
296 |
264 |
269 |
257 |
256 |
314 |
252 |
261 |
229 |
271 |
295 |
294 |
294 |
292 |
348 |
296 |
267 |
262 |
249 |
262 |
215 |
224 |
237 |
223 |
292 |
299 |
226 |
257 |
248 |
268 |
281 |
312 |
272 |
312 |
319 |
252 |
297 |
299 |
262 |
286 |
238 |
270 |
214 |
219 |
232 |
259 |
293 |
0 |
0 |
0 |
0 |
Robo a transeúnte en espacio abierto al público |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
2 |
2 |
3 |
1 |
1 |
2 |
3 |
9 |
7 |
6 |
7 |
6 |
5 |
4 |
18 |
8 |
8 |
6 |
16 |
27 |
22 |
24 |
17 |
13 |
14 |
30 |
0 |
11 |
20 |
31 |
11 |
13 |
21 |
13 |
45 |
14 |
22 |
16 |
14 |
14 |
7 |
14 |
14 |
8 |
22 |
7 |
12 |
16 |
8 |
22 |
11 |
14 |
7 |
9 |
6 |
9 |
7 |
9 |
0 |
0 |
0 |
0 |
Robo a transeúnte en vía pública |
101 |
58 |
110 |
80 |
97 |
80 |
83 |
88 |
116 |
118 |
108 |
90 |
87 |
64 |
114 |
104 |
110 |
149 |
158 |
186 |
185 |
172 |
150 |
176 |
140 |
147 |
157 |
157 |
151 |
161 |
141 |
169 |
169 |
195 |
194 |
195 |
199 |
178 |
159 |
135 |
181 |
160 |
178 |
170 |
137 |
203 |
153 |
147 |
124 |
133 |
115 |
145 |
145 |
122 |
113 |
137 |
146 |
162 |
156 |
116 |
110 |
134 |
149 |
85 |
91 |
110 |
133 |
141 |
0 |
0 |
0 |
0 |
Robo a transportista |
8 |
20 |
9 |
10 |
10 |
13 |
8 |
10 |
6 |
16 |
17 |
14 |
20 |
22 |
8 |
10 |
15 |
14 |
10 |
1 |
7 |
11 |
4 |
3 |
10 |
7 |
8 |
2 |
3 |
6 |
10 |
11 |
11 |
16 |
4 |
10 |
33 |
17 |
21 |
18 |
11 |
2 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Robo de autopartes |
33 |
26 |
39 |
34 |
37 |
30 |
52 |
34 |
34 |
41 |
40 |
28 |
36 |
22 |
16 |
16 |
14 |
49 |
62 |
52 |
46 |
49 |
43 |
40 |
55 |
64 |
57 |
72 |
55 |
76 |
53 |
70 |
76 |
86 |
87 |
57 |
78 |
86 |
100 |
94 |
116 |
90 |
104 |
86 |
104 |
90 |
73 |
73 |
110 |
96 |
75 |
68 |
63 |
69 |
76 |
58 |
61 |
71 |
39 |
45 |
70 |
62 |
81 |
68 |
46 |
49 |
52 |
62 |
0 |
0 |
0 |
0 |
Robo de ganado |
26 |
24 |
24 |
22 |
19 |
28 |
42 |
34 |
32 |
22 |
14 |
32 |
30 |
26 |
21 |
20 |
26 |
18 |
13 |
20 |
18 |
26 |
26 |
22 |
14 |
20 |
20 |
7 |
20 |
18 |
27 |
17 |
16 |
21 |
21 |
23 |
28 |
31 |
12 |
9 |
15 |
19 |
16 |
21 |
11 |
16 |
13 |
14 |
17 |
33 |
19 |
19 |
29 |
19 |
19 |
27 |
19 |
22 |
13 |
22 |
22 |
11 |
15 |
7 |
18 |
12 |
10 |
19 |
0 |
0 |
0 |
0 |
Robo de maquinaria |
0 |
1 |
1 |
3 |
2 |
2 |
3 |
1 |
1 |
2 |
3 |
1 |
2 |
3 |
2 |
2 |
3 |
3 |
0 |
1 |
3 |
2 |
1 |
1 |
0 |
0 |
4 |
0 |
6 |
3 |
1 |
1 |
1 |
2 |
0 |
4 |
1 |
1 |
0 |
1 |
3 |
2 |
1 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
2 |
2 |
1 |
2 |
4 |
0 |
0 |
0 |
0 |
0 |
Robo de vehículo automotor |
313 |
275 |
274 |
273 |
326 |
340 |
320 |
364 |
389 |
350 |
311 |
337 |
326 |
305 |
378 |
347 |
372 |
415 |
408 |
504 |
458 |
478 |
440 |
449 |
423 |
412 |
457 |
411 |
500 |
516 |
513 |
516 |
496 |
510 |
494 |
490 |
508 |
398 |
468 |
474 |
535 |
525 |
556 |
632 |
480 |
527 |
468 |
594 |
472 |
442 |
441 |
473 |
426 |
399 |
402 |
372 |
355 |
357 |
376 |
407 |
347 |
338 |
329 |
272 |
224 |
237 |
339 |
301 |
0 |
0 |
0 |
0 |
Robo en transporte individual |
22 |
12 |
16 |
12 |
16 |
22 |
11 |
23 |
26 |
19 |
29 |
28 |
26 |
24 |
25 |
15 |
35 |
19 |
22 |
32 |
19 |
25 |
36 |
28 |
17 |
25 |
41 |
25 |
27 |
22 |
27 |
29 |
37 |
31 |
33 |
41 |
33 |
33 |
28 |
21 |
34 |
38 |
24 |
30 |
37 |
31 |
37 |
29 |
22 |
20 |
19 |
36 |
35 |
42 |
27 |
28 |
35 |
43 |
23 |
27 |
27 |
27 |
28 |
17 |
32 |
42 |
50 |
30 |
0 |
0 |
0 |
0 |
Robo en transporte público colectivo |
29 |
26 |
51 |
33 |
27 |
20 |
38 |
60 |
60 |
54 |
41 |
48 |
28 |
38 |
35 |
47 |
53 |
57 |
55 |
75 |
61 |
66 |
46 |
32 |
38 |
31 |
33 |
33 |
34 |
65 |
52 |
33 |
24 |
16 |
17 |
24 |
15 |
12 |
10 |
2 |
7 |
6 |
5 |
7 |
5 |
5 |
9 |
9 |
16 |
7 |
4 |
13 |
12 |
16 |
13 |
21 |
24 |
47 |
51 |
27 |
30 |
42 |
21 |
28 |
37 |
34 |
35 |
22 |
0 |
0 |
0 |
0 |
Robo en transporte público individual |
6 |
3 |
7 |
6 |
3 |
7 |
5 |
2 |
4 |
5 |
2 |
5 |
1 |
4 |
5 |
4 |
1 |
6 |
9 |
7 |
6 |
6 |
0 |
6 |
7 |
5 |
12 |
10 |
8 |
12 |
14 |
12 |
10 |
5 |
5 |
2 |
7 |
11 |
8 |
5 |
12 |
8 |
8 |
6 |
11 |
6 |
6 |
6 |
8 |
14 |
15 |
8 |
6 |
6 |
12 |
8 |
17 |
8 |
13 |
20 |
11 |
10 |
21 |
14 |
11 |
9 |
7 |
10 |
0 |
0 |
0 |
0 |
Secuestro |
1 |
0 |
2 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
0 |
3 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
2 |
0 |
3 |
3 |
2 |
0 |
1 |
0 |
2 |
0 |
3 |
0 |
1 |
1 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
2 |
3 |
1 |
1 |
1 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
2 |
2 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
Tráfico de menores |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Trata de personas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
2 |
0 |
1 |
0 |
0 |
1 |
3 |
0 |
1 |
0 |
0 |
0 |
3 |
1 |
2 |
1 |
3 |
1 |
1 |
2 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
3 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Violación equiparada |
1 |
3 |
3 |
2 |
1 |
2 |
3 |
1 |
3 |
4 |
1 |
5 |
1 |
1 |
4 |
1 |
3 |
6 |
7 |
4 |
6 |
3 |
7 |
6 |
6 |
8 |
4 |
1 |
11 |
10 |
7 |
9 |
9 |
6 |
6 |
4 |
10 |
5 |
6 |
5 |
6 |
9 |
4 |
4 |
6 |
5 |
9 |
4 |
3 |
9 |
8 |
7 |
12 |
5 |
9 |
12 |
5 |
7 |
11 |
14 |
11 |
14 |
4 |
12 |
16 |
20 |
9 |
21 |
0 |
0 |
0 |
0 |
Violación simple |
17 |
11 |
30 |
25 |
31 |
22 |
29 |
28 |
24 |
28 |
28 |
21 |
16 |
20 |
21 |
24 |
34 |
22 |
25 |
25 |
37 |
24 |
28 |
9 |
12 |
21 |
31 |
23 |
36 |
31 |
25 |
27 |
23 |
24 |
24 |
19 |
18 |
25 |
18 |
18 |
22 |
32 |
23 |
23 |
20 |
22 |
27 |
14 |
20 |
24 |
29 |
33 |
44 |
47 |
49 |
33 |
28 |
44 |
43 |
51 |
46 |
39 |
48 |
30 |
25 |
26 |
35 |
31 |
0 |
0 |
0 |
0 |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
2 |
0 |
1 |
0 |
1 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
0 |
0 |
0 |
Violencia familiar |
49 |
67 |
81 |
74 |
86 |
76 |
73 |
82 |
86 |
106 |
83 |
79 |
59 |
72 |
80 |
82 |
75 |
76 |
83 |
95 |
89 |
103 |
82 |
69 |
85 |
63 |
96 |
83 |
123 |
92 |
106 |
126 |
86 |
111 |
103 |
112 |
113 |
97 |
136 |
178 |
179 |
154 |
177 |
175 |
182 |
188 |
142 |
144 |
150 |
159 |
221 |
236 |
245 |
216 |
385 |
354 |
286 |
338 |
283 |
262 |
260 |
297 |
376 |
298 |
307 |
261 |
342 |
292 |
0 |
0 |
0 |
0 |
Delitos que aumentaron respecto del mismo mes en el año anterior(en tasa por cada 1000 habitantes)
kable(aumentoContraUnAno)
Aborto |
Acoso sexual |
Daño a la propiedad |
Despojo |
Electorales |
Fraude |
Homicidio doloso |
Otros delitos contra la sociedad |
Otros delitos que atentan contra la libertad personal |
Otros delitos que atentan contra la vida y la integridad corporal |
Robo a transeúnte en espacio abierto al público |
Robo a transeúnte en vía pública |
Robo de autopartes |
Robo en transporte público colectivo |
Violación equiparada |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
Delitos en su máximo del año en Querétaro
#MAximo en el año
stop3<-stop1-(stop1 %% 12)+2
soloEsteAno<-catalogoDelitos[,c(1,stop3:stop1)]
maxAno<-apply(X = soloEsteAno[,2:ncol(soloEsteAno)],MARGIN = 1,FUN = max)
delitosEnmaximoAnual<-soloEsteAno$Delito[soloEsteAno[,ncol(soloEsteAno)]>=maxAno & soloEsteAno[ncol(soloEsteAno)]!=0]
kable(delitosEnmaximoAnual)
Acoso sexual |
Allanamiento de morada |
Contra el medio ambiente |
Feminicidio |
Fraude |
Otros delitos contra el patrimonio |
Otros delitos contra la sociedad |
Otros delitos que atentan contra la vida y la integridad corporal |
Robo a negocio |
Violación equiparada |
Violencia de género en todas sus modalidades distinta a la violencia familiar |
Municipal
Municipios que aumentaron respecto del mismo mes del año anterior (Agosto )
#Superior al mismo périodo del año anterior
catalogoMunicipios<-as.data.frame(sort(unique(delitosQRO2020$Cve..Municipio)))
losMeses2020<-sort(unique(delitosQRO2020$periodo))
for (i in 1:length(losMeses2020)){
a<-subset(delitosQRO2020, delitosQRO2020$periodo==losMeses2020[i])
b<-as.data.frame(aggregate(a$value~a$Cve..Municipio,a,sum))[2]
catalogoMunicipios<-cbind(catalogoMunicipios,b)
}
names(catalogoMunicipios)<-c("cveMun", losMeses2020)
catalogoMunicipios<-catalogoMunicipios[1:18,]
pop2020Qro<-subset(pop2020,pop2020$CLAVE_ENT==22)
popQro20<- aggregate(pop2020Qro$POB~ pop2020Qro$CLAVE,pop2020Qro,sum)
pop2019Qro<-subset(pop,pop$CLAVE_ENT==22 & pop$ANO==2019)
popQro19<- aggregate(pop2019Qro$POB~ pop2019Qro$CLAVE,pop2019Qro,sum)
comparaAnoAnteriorMUN<-catalogoMunicipios[,c(1,stop2,stop1)]
comparaAnoAnteriorMUNTasa<-comparaAnoAnteriorMUN
comparaAnoAnteriorMUNTasa[2]<-round(comparaAnoAnteriorMUNTasa[2]/popQro19[2]*1000,3)
comparaAnoAnteriorMUNTasa[3]<-round(comparaAnoAnteriorMUNTasa[3]/popQro20[2]*1000,3)
names(comparaAnoAnteriorMUNTasa)<-c("Delito", "Tasa 2019", "Tasa 2020")
comparaAnoAnteriorMUNTasa$cambio<-NA
comparaAnoAnteriorMUNTasa$cambio<-round((comparaAnoAnteriorMUNTasa[3]-comparaAnoAnteriorMUNTasa[2])/comparaAnoAnteriorMUNTasa[2],2)
misMuns<-catalogoMunicipios[,1]
catalogoMunicipios$nomMun<-NA
nomMun<-c()
for (i in 1:length(misMuns)) {
catalogoMunicipios$nomMun[i]<-unique(delitosQRO2020$Municipio[delitosQRO2020$Cve..Municipio==misMuns[i]])
nomMun[i]<-unique(delitosQRO2020$Municipio[delitosQRO2020$Cve..Municipio==misMuns[i]])
}
aumento<-comparaAnoAnteriorMUNTasa$Delito[comparaAnoAnteriorMUNTasa$cambio>0 & !is.na(comparaAnoAnteriorMUNTasa$cambio)]
aumentoContraUnAnoMUNICIPAL<-NA
for (i in 1:length(aumento)) {
aumentoContraUnAnoMUNICIPAL[i]<-catalogoMunicipios$nomMun[catalogoMunicipios$cveMun==aumento[i]]
}
names(aumentoContraUnAnoMUNICIPAL)<-c("Municipios")
kable(aumentoContraUnAnoMUNICIPAL,caption = "Municipios cuya tasa por cada 1000 habitantes aumentó respecto del mismo mes del año anterior")
Municipios cuya tasa por cada 1000 habitantes aumentó respecto del mismo mes del año anterior
Amealco de Bonfil |
Arroyo Seco |
Huimilpan |
Jalpan de Serra |
Landa de Matamoros |
Peñamiller |
Cambio respecto del mes anterior por municipio
stop4<-stop1-1
municipio<-as.data.frame(cbind(catalogoMunicipios$cveMun, catalogoMunicipios$nomMun,catalogoMunicipios[,stop4],catalogoMunicipios[,stop1]))
municipio$tasa<-NA
municipio$tasa<-round((as.numeric(municipio[,4])-as.numeric(municipio[,3]) )/as.numeric(municipio[,3])*100,2)
names(municipio)<-c("cveMun","Municipio",anterior, esteMes,"Tasa de cambio respecto del mes anterior (%)")
kable(municipio[2:5])
Amealco de Bonfil |
67 |
76 |
13.43 |
Pinal de Amoles |
12 |
20 |
66.67 |
Arroyo Seco |
10 |
10 |
0.00 |
Cadereyta de Montes |
72 |
56 |
-22.22 |
Colón |
61 |
66 |
8.20 |
Corregidora |
314 |
308 |
-1.91 |
Ezequiel Montes |
44 |
44 |
0.00 |
Huimilpan |
67 |
60 |
-10.45 |
Jalpan de Serra |
36 |
42 |
16.67 |
Landa de Matamoros |
14 |
13 |
-7.14 |
El Marqués |
404 |
361 |
-10.64 |
Pedro Escobedo |
103 |
107 |
3.88 |
Peñamiller |
15 |
21 |
40.00 |
Querétaro |
2487 |
2589 |
4.10 |
San Joaquín |
7 |
6 |
-14.29 |
San Juan del Río |
650 |
625 |
-3.85 |
Tequisquiapan |
99 |
105 |
6.06 |
Tolimán |
16 |
22 |
37.50 |
Municipios en Máximo Anual
soloEsteAnoMUN<-catalogoMunicipios[,c(1,stop3:stop1)]
maxAnoMun<-apply(X = soloEsteAnoMUN[,2:ncol(soloEsteAnoMUN)],MARGIN = 1,FUN = max)
municipiosEnmaximoAnual<-soloEsteAnoMUN
municipiosEnmaximoAnual<-soloEsteAnoMUN$cveMun[soloEsteAnoMUN[,ncol(soloEsteAnoMUN)]>=maxAnoMun & soloEsteAnoMUN[ncol(soloEsteAnoMUN)]!=0]
munmax<-c()
for (i in 1:length(municipiosEnmaximoAnual)) {
munmax[i]<-catalogoMunicipios$nomMun[catalogoMunicipios$cveMun==municipiosEnmaximoAnual[i]]
}
names(munmax)<-c("Municipios en Máximo Anual")
kable(munmax)
Municipios en Máximo Anual |
Jalpan de Serra |
Municipios en su nivel máximo (absoluto) registrado
maximoAbsolutoMUNICIPAL<-apply(X = catalogoMunicipios[,2:stop1], MARGIN = 1,max)
estePeriodoMunicipal<-catalogoMunicipios[,stop1]
municipiosEnmaximoAbsoluto<-catalogoMunicipios$nomMun[estePeriodoMunicipal!=0 & estePeriodoMunicipal>=maximoAbsolutoMUNICIPAL]
if(!is.null(dim(municipiosEnmaximoAbsoluto))){
names(municipiosEnmaximoAbsoluto)<-c("Municipios en máximo histórico (absoluto) registrado")
}
kable(municipiosEnmaximoAbsoluto)
Serie de tiempo municipal (Absolutos)
catalogoMunicipios2<-catalogoMunicipios
names(catalogoMunicipios2[2:73])<-paste0(substr(names(catalogoMunicipios2[2:73]),5,6),"-",substr(names(catalogoMunicipios2[2:73]),1,4))
catalogoMunicipios2<-cbind(catalogoMunicipios2[,1],catalogoMunicipios2[,74],catalogoMunicipios2[,2:stop1])
names(catalogoMunicipios2)[c(1,2)]<-c("Clave","Municipio")
kable(catalogoMunicipios2)
22001 |
Amealco de Bonfil |
45 |
47 |
52 |
40 |
52 |
51 |
50 |
59 |
42 |
52 |
55 |
70 |
48 |
51 |
53 |
52 |
71 |
50 |
59 |
49 |
43 |
44 |
40 |
40 |
51 |
36 |
45 |
43 |
43 |
81 |
48 |
42 |
48 |
40 |
48 |
37 |
54 |
46 |
43 |
34 |
38 |
80 |
90 |
80 |
53 |
70 |
73 |
70 |
92 |
89 |
92 |
101 |
101 |
105 |
80 |
74 |
65 |
87 |
87 |
88 |
75 |
84 |
93 |
75 |
53 |
75 |
67 |
76 |
22002 |
Pinal de Amoles |
14 |
3 |
10 |
10 |
11 |
12 |
11 |
6 |
10 |
11 |
3 |
11 |
10 |
17 |
9 |
14 |
10 |
9 |
5 |
10 |
8 |
17 |
4 |
13 |
8 |
7 |
17 |
13 |
14 |
11 |
13 |
12 |
11 |
21 |
13 |
6 |
9 |
11 |
9 |
18 |
26 |
28 |
28 |
15 |
18 |
15 |
12 |
7 |
9 |
21 |
16 |
25 |
15 |
21 |
21 |
21 |
15 |
18 |
18 |
19 |
20 |
20 |
19 |
19 |
28 |
21 |
12 |
20 |
22003 |
Arroyo Seco |
5 |
4 |
5 |
4 |
4 |
5 |
7 |
8 |
5 |
4 |
5 |
3 |
2 |
2 |
4 |
3 |
7 |
6 |
6 |
2 |
5 |
2 |
3 |
9 |
6 |
6 |
3 |
5 |
4 |
2 |
9 |
7 |
2 |
3 |
5 |
3 |
3 |
6 |
6 |
8 |
12 |
8 |
12 |
5 |
2 |
8 |
3 |
9 |
17 |
7 |
7 |
9 |
7 |
9 |
12 |
8 |
5 |
7 |
20 |
10 |
11 |
4 |
16 |
11 |
10 |
8 |
10 |
10 |
22004 |
Cadereyta de Montes |
41 |
37 |
37 |
37 |
38 |
47 |
40 |
36 |
50 |
29 |
37 |
40 |
47 |
48 |
47 |
58 |
52 |
41 |
51 |
45 |
42 |
50 |
37 |
38 |
43 |
44 |
46 |
48 |
51 |
59 |
47 |
48 |
49 |
49 |
40 |
27 |
38 |
50 |
46 |
59 |
48 |
74 |
84 |
60 |
109 |
75 |
53 |
64 |
58 |
88 |
87 |
60 |
66 |
62 |
75 |
80 |
71 |
60 |
74 |
72 |
52 |
69 |
61 |
65 |
64 |
59 |
72 |
56 |
22005 |
Colón |
40 |
30 |
46 |
42 |
40 |
56 |
45 |
40 |
48 |
38 |
47 |
36 |
49 |
53 |
50 |
49 |
57 |
63 |
56 |
60 |
71 |
66 |
55 |
52 |
45 |
60 |
53 |
50 |
57 |
67 |
48 |
48 |
36 |
54 |
55 |
56 |
47 |
53 |
49 |
62 |
54 |
61 |
80 |
53 |
67 |
77 |
54 |
65 |
62 |
59 |
71 |
76 |
67 |
70 |
75 |
82 |
86 |
80 |
59 |
71 |
72 |
65 |
81 |
69 |
64 |
82 |
61 |
66 |
22006 |
Corregidora |
176 |
166 |
186 |
179 |
200 |
218 |
189 |
183 |
189 |
210 |
211 |
182 |
185 |
192 |
183 |
213 |
226 |
297 |
338 |
359 |
302 |
304 |
308 |
306 |
321 |
311 |
368 |
283 |
361 |
304 |
343 |
306 |
342 |
352 |
298 |
330 |
345 |
329 |
397 |
362 |
379 |
387 |
390 |
373 |
349 |
365 |
329 |
373 |
353 |
333 |
396 |
374 |
399 |
379 |
382 |
364 |
346 |
394 |
377 |
333 |
395 |
359 |
349 |
260 |
254 |
253 |
314 |
308 |
22007 |
Ezequiel Montes |
30 |
38 |
25 |
23 |
22 |
42 |
37 |
31 |
40 |
47 |
43 |
43 |
26 |
35 |
68 |
55 |
57 |
40 |
41 |
48 |
48 |
47 |
37 |
39 |
28 |
22 |
36 |
26 |
32 |
38 |
47 |
38 |
39 |
43 |
48 |
30 |
51 |
52 |
42 |
51 |
46 |
58 |
64 |
75 |
63 |
46 |
59 |
54 |
54 |
46 |
90 |
59 |
61 |
62 |
54 |
60 |
63 |
55 |
55 |
46 |
62 |
55 |
57 |
35 |
64 |
56 |
44 |
44 |
22008 |
Huimilpan |
36 |
33 |
42 |
28 |
25 |
39 |
30 |
33 |
32 |
26 |
52 |
35 |
29 |
36 |
42 |
21 |
33 |
28 |
34 |
31 |
28 |
29 |
40 |
22 |
22 |
21 |
23 |
24 |
37 |
29 |
26 |
41 |
32 |
35 |
20 |
35 |
29 |
37 |
33 |
28 |
28 |
34 |
49 |
49 |
44 |
46 |
55 |
38 |
48 |
44 |
55 |
54 |
53 |
43 |
59 |
50 |
58 |
61 |
35 |
49 |
58 |
61 |
65 |
38 |
51 |
56 |
67 |
60 |
22009 |
Jalpan de Serra |
18 |
32 |
35 |
15 |
27 |
21 |
16 |
23 |
13 |
24 |
16 |
18 |
25 |
16 |
32 |
29 |
25 |
24 |
32 |
27 |
20 |
24 |
15 |
15 |
22 |
25 |
21 |
23 |
21 |
24 |
23 |
18 |
14 |
38 |
32 |
20 |
29 |
27 |
30 |
34 |
41 |
31 |
49 |
36 |
38 |
42 |
32 |
31 |
50 |
47 |
42 |
40 |
57 |
29 |
36 |
36 |
23 |
36 |
31 |
21 |
39 |
30 |
33 |
38 |
28 |
36 |
36 |
42 |
22010 |
Landa de Matamoros |
1 |
4 |
3 |
2 |
5 |
4 |
6 |
2 |
6 |
9 |
8 |
5 |
3 |
1 |
1 |
3 |
4 |
9 |
6 |
8 |
6 |
2 |
6 |
4 |
6 |
5 |
5 |
6 |
9 |
4 |
6 |
8 |
4 |
4 |
6 |
7 |
10 |
3 |
8 |
6 |
7 |
11 |
10 |
9 |
5 |
10 |
15 |
10 |
7 |
6 |
7 |
9 |
5 |
9 |
10 |
12 |
9 |
11 |
11 |
10 |
13 |
10 |
18 |
19 |
6 |
13 |
14 |
13 |
22011 |
El Marqués |
133 |
161 |
158 |
184 |
158 |
171 |
166 |
168 |
197 |
169 |
158 |
173 |
152 |
151 |
148 |
170 |
189 |
222 |
279 |
322 |
287 |
289 |
276 |
266 |
262 |
279 |
294 |
313 |
338 |
325 |
328 |
325 |
285 |
291 |
268 |
307 |
365 |
308 |
334 |
352 |
390 |
376 |
378 |
381 |
337 |
393 |
347 |
372 |
441 |
457 |
437 |
474 |
488 |
392 |
473 |
387 |
380 |
417 |
379 |
408 |
377 |
395 |
403 |
320 |
291 |
347 |
404 |
361 |
22012 |
Pedro Escobedo |
44 |
32 |
54 |
48 |
49 |
59 |
49 |
57 |
32 |
45 |
45 |
44 |
47 |
50 |
68 |
57 |
70 |
46 |
52 |
66 |
55 |
37 |
48 |
49 |
59 |
68 |
101 |
83 |
101 |
113 |
107 |
123 |
106 |
131 |
87 |
117 |
112 |
102 |
110 |
116 |
135 |
112 |
123 |
117 |
106 |
129 |
111 |
90 |
151 |
111 |
103 |
130 |
140 |
113 |
131 |
114 |
115 |
105 |
91 |
80 |
80 |
77 |
115 |
66 |
89 |
84 |
103 |
107 |
22013 |
Peñamiller |
10 |
4 |
3 |
4 |
9 |
5 |
9 |
3 |
6 |
6 |
8 |
7 |
8 |
5 |
4 |
7 |
13 |
11 |
7 |
7 |
17 |
6 |
11 |
5 |
5 |
4 |
6 |
5 |
10 |
14 |
3 |
9 |
6 |
5 |
6 |
10 |
11 |
8 |
10 |
15 |
12 |
14 |
9 |
15 |
15 |
17 |
14 |
11 |
13 |
7 |
14 |
11 |
10 |
14 |
11 |
15 |
8 |
19 |
4 |
17 |
7 |
20 |
14 |
13 |
6 |
37 |
15 |
21 |
22014 |
Querétaro |
1556 |
1414 |
1611 |
1557 |
1605 |
1541 |
1601 |
1713 |
1747 |
1830 |
1762 |
1704 |
1557 |
1414 |
1712 |
1686 |
1873 |
2461 |
2647 |
2936 |
2769 |
2983 |
2550 |
2561 |
2489 |
2447 |
2772 |
2517 |
2992 |
2962 |
2701 |
3073 |
2829 |
3031 |
2941 |
2833 |
2684 |
2500 |
2873 |
2791 |
3003 |
2802 |
2975 |
3026 |
2859 |
3126 |
2648 |
2702 |
2816 |
2748 |
2915 |
2976 |
3184 |
2959 |
3101 |
2900 |
2671 |
2971 |
2717 |
2755 |
2622 |
2678 |
2744 |
2064 |
2012 |
2059 |
2487 |
2589 |
22015 |
San Joaquín |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
3 |
3 |
1 |
3 |
3 |
3 |
4 |
3 |
3 |
4 |
4 |
2 |
5 |
7 |
4 |
5 |
6 |
3 |
4 |
3 |
4 |
8 |
3 |
2 |
5 |
3 |
3 |
5 |
2 |
1 |
0 |
4 |
8 |
4 |
5 |
5 |
8 |
4 |
6 |
5 |
10 |
8 |
6 |
4 |
7 |
7 |
3 |
13 |
9 |
6 |
10 |
7 |
7 |
8 |
6 |
6 |
7 |
6 |
7 |
7 |
6 |
22016 |
San Juan del Río |
371 |
314 |
404 |
425 |
440 |
410 |
366 |
312 |
354 |
400 |
406 |
364 |
339 |
380 |
400 |
437 |
430 |
392 |
398 |
356 |
392 |
371 |
403 |
479 |
518 |
478 |
569 |
457 |
543 |
558 |
514 |
560 |
537 |
617 |
574 |
535 |
594 |
604 |
695 |
677 |
714 |
650 |
631 |
605 |
594 |
664 |
589 |
611 |
624 |
561 |
684 |
702 |
788 |
664 |
736 |
687 |
631 |
660 |
579 |
579 |
617 |
612 |
625 |
491 |
445 |
480 |
650 |
625 |
22017 |
Tequisquiapan |
47 |
40 |
32 |
34 |
43 |
37 |
52 |
46 |
53 |
47 |
54 |
57 |
35 |
35 |
55 |
52 |
42 |
54 |
52 |
50 |
58 |
41 |
42 |
49 |
49 |
57 |
50 |
50 |
119 |
98 |
109 |
93 |
107 |
100 |
91 |
86 |
123 |
81 |
103 |
127 |
132 |
102 |
100 |
103 |
94 |
109 |
84 |
100 |
73 |
90 |
103 |
95 |
94 |
94 |
114 |
134 |
84 |
108 |
87 |
101 |
110 |
117 |
111 |
99 |
79 |
103 |
99 |
105 |
22018 |
Tolimán |
11 |
10 |
24 |
18 |
11 |
21 |
17 |
12 |
13 |
18 |
16 |
11 |
18 |
14 |
17 |
20 |
21 |
21 |
15 |
16 |
13 |
16 |
12 |
18 |
13 |
9 |
16 |
17 |
24 |
14 |
11 |
11 |
15 |
15 |
12 |
17 |
8 |
10 |
6 |
18 |
19 |
43 |
44 |
41 |
41 |
42 |
39 |
38 |
33 |
36 |
53 |
36 |
19 |
43 |
56 |
46 |
29 |
16 |
29 |
23 |
23 |
22 |
18 |
27 |
35 |
27 |
16 |
22 |
Top 5 delitos por municipio
En lo que va del año
mm<-unique(delitosQRO2020$Cve..Municipio)
mm<-mm[1:18]
top5<-as.data.frame(c("Primero","Segundo","Tercero","Cuarto","Quinto"))
for (i in 1:length(mm)){
mimu<-subset(delitosQRO2020,delitosQRO2020$Cve..Municipio==mm[i] & delitosQRO2020$Ano==2020)
a<-aggregate(mimu$value~mimu$Subtipo.de.delito,data = mimu, FUN = sum)
a<-as.data.frame(a)
names(a)<-c(nomMun[i],"Carpetas")
a<-a[order(a$Carpetas, decreasing = TRUE),]
top5<-cbind(top5,a[1:5,])
}
names(top5)[1]<-c("Posicion")
kable(top5,caption="Top 5 delitos en carpetas de investigación por municipio en lo que va del año ")
Top 5 delitos en carpetas de investigación por municipio en lo que va del año
34 |
Primero |
Otros robos |
84 |
Lesiones dolosas |
38 |
Amenazas |
15 |
Lesiones dolosas |
84 |
Otros robos |
102 |
Otros robos |
444 |
Otros robos |
68 |
Otros robos |
64 |
Violencia familiar |
62 |
Violencia familiar |
23 |
Otros robos |
584 |
Otros robos |
120 |
Lesiones dolosas |
23 |
Otros robos |
4047 |
Otros robos |
10 |
Otros robos |
834 |
Otros robos |
138 |
Violencia familiar |
49 |
25 |
Segundo |
Lesiones dolosas |
79 |
Violencia familiar |
27 |
Violencia familiar |
14 |
Violencia familiar |
65 |
Violencia familiar |
94 |
Lesiones dolosas |
226 |
Violencia familiar |
44 |
Amenazas |
63 |
Otros robos |
43 |
Lesiones dolosas |
15 |
Lesiones dolosas |
327 |
Lesiones dolosas |
103 |
Violencia familiar |
23 |
Lesiones dolosas |
1654 |
Amenazas |
8 |
Amenazas |
459 |
Robo a casa habitación |
96 |
Lesiones dolosas |
31 |
55 |
Tercero |
Violencia familiar |
65 |
Amenazas |
17 |
Otros robos |
11 |
Amenazas |
46 |
Lesiones dolosas |
68 |
Otros delitos del Fuero Común |
222 |
Otros delitos del Fuero Común |
39 |
Lesiones dolosas |
55 |
Amenazas |
31 |
Amenazas |
12 |
Violencia familiar |
243 |
Violencia familiar |
62 |
Amenazas |
14 |
Robo a negocio |
1562 |
Robo a casa habitación |
6 |
Lesiones dolosas |
416 |
Lesiones dolosas |
84 |
Amenazas |
12 |
6 |
Cuarto |
Amenazas |
61 |
Otros robos |
17 |
Lesiones dolosas |
6 |
Otros robos |
46 |
Otros delitos del Fuero Común |
41 |
Amenazas |
214 |
Lesiones dolosas |
38 |
Violencia familiar |
41 |
Lesiones dolosas |
30 |
Otros robos |
10 |
Amenazas |
235 |
Otros delitos del Fuero Común |
61 |
Otros robos |
13 |
Robo de vehículo automotor |
1543 |
Violencia familiar |
5 |
Otros delitos del Fuero Común |
407 |
Amenazas |
71 |
Otros robos |
11 |
30 |
Quinto |
Otros delitos del Fuero Común |
61 |
Daño a la propiedad |
8 |
Otros delitos que atentan contra la vida y la integridad corporal |
5 |
Otros delitos del Fuero Común |
36 |
Amenazas |
38 |
Fraude |
186 |
Robo de vehículo automotor |
31 |
Daño a la propiedad |
39 |
Otros delitos del Fuero Común |
21 |
Despojo |
7 |
Otros delitos del Fuero Común |
186 |
Amenazas |
53 |
Daño a la propiedad |
9 |
Otros delitos del Fuero Común |
1541 |
Robo a negocio |
4 |
Violencia familiar |
404 |
Otros delitos del Fuero Común |
57 |
Daño a la propiedad |
10 |
Top 5 municipal durante Agosto
top5mes<-as.data.frame(c("Primero","Segundo","Tercero","Cuarto","Quinto"))
for (i in 1:length(mm)) {
mimume<-subset(delitosQRO2020,delitosQRO2020$Cve..Municipio==mm[i] & delitosQRO2020$Ano==2020 & delitosQRO2020$meses==esteMes)
a<-aggregate(mimume$value~mimume$Subtipo.de.delito,data = mimume, FUN = sum)
a<-as.data.frame(a)
names(a)<-c(nomMun[i],"Carpetas")
a<-a[order(a$Carpetas, decreasing = TRUE),]
top5mes<-cbind(top5mes,a[1:5,])
}
names(top5mes)[1]<-c("Posicion")
kable(top5mes,caption=paste0("Top 5 delitos en carpetas de investigación por municipio en ",esteMes))
Top 5 delitos en carpetas de investigación por municipio en Agosto
34 |
Primero |
Otros robos |
12 |
Violencia familiar |
4 |
Amenazas |
3 |
Otros robos |
9 |
Otros robos |
12 |
Otros robos |
56 |
Otros robos |
10 |
Amenazas |
11 |
Violencia familiar |
12 |
Lesiones dolosas |
3 |
Otros robos |
80 |
Otros robos |
18 |
Otros robos |
4 |
Otros robos |
523 |
Otros robos |
2 |
Otros robos |
134 |
Otros robos |
20 |
Lesiones dolosas |
8 |
25 |
Segundo |
Lesiones dolosas |
10 |
Lesiones dolosas |
3 |
Otros robos |
2 |
Violencia familiar |
9 |
Violencia familiar |
11 |
Amenazas |
30 |
Lesiones dolosas |
4 |
Otros robos |
6 |
Amenazas |
5 |
Violencia familiar |
3 |
Amenazas |
33 |
Lesiones dolosas |
15 |
Violencia familiar |
3 |
Robo a negocio |
227 |
Amenazas |
1 |
Amenazas |
77 |
Robo a casa habitación |
11 |
Violencia familiar |
4 |
55 |
Tercero |
Violencia familiar |
9 |
Otros robos |
3 |
Acoso sexual |
1 |
Lesiones dolosas |
6 |
Lesiones dolosas |
8 |
Fraude |
30 |
Violencia familiar |
4 |
Violencia familiar |
6 |
Abuso sexual |
3 |
Abuso sexual |
1 |
Lesiones dolosas |
31 |
Otros delitos del Fuero Común |
11 |
Abuso sexual |
2 |
Lesiones dolosas |
210 |
Otros delitos que atentan contra la vida y la integridad corporal |
1 |
Lesiones dolosas |
55 |
Amenazas |
9 |
Otros robos |
2 |
36 |
Cuarto |
Robo a casa habitación |
8 |
Acoso sexual |
2 |
Daño a la propiedad |
1 |
Otros delitos del Fuero Común |
5 |
Narcomenudeo |
4 |
Lesiones dolosas |
28 |
Amenazas |
3 |
Lesiones dolosas |
5 |
Despojo |
3 |
Amenazas |
1 |
Violencia familiar |
29 |
Robo a casa habitación |
9 |
Amenazas |
2 |
Robo de vehículo automotor |
209 |
Robo a casa habitación |
1 |
Violencia familiar |
50 |
Otros delitos del Fuero Común |
8 |
Abuso de confianza |
1 |
30 |
Quinto |
Otros delitos del Fuero Común |
6 |
Otros delitos que atentan contra la vida y la integridad corporal |
2 |
Otros delitos del Fuero Común |
1 |
Extorsión |
3 |
Otros delitos del Fuero Común |
3 |
Robo a negocio |
26 |
Fraude |
3 |
Daño a la propiedad |
4 |
Otros robos |
3 |
Daño a la propiedad |
1 |
Robo de vehículo automotor |
26 |
Violencia familiar |
8 |
Daño a la propiedad |
2 |
Fraude |
186 |
Violencia familiar |
1 |
Otros delitos del Fuero Común |
34 |
Violencia familiar |
7 |
Abuso sexual |
1 |
Robo y robo con violencia
delitos3<-delitos2[delitos2$Modalidad=="Con violencia" | delitos2$Modalidad=="Sin violencia" | delitos2$Subtipo.de.delito=="Robo de maquinaria" | delitos2$Subtipo.de.delito== "Robo de vehículo automotor" ,]
cualArreglar<-unique(delitos3$Modalidad)
cualArreglar<-cualArreglar[3:length(cualArreglar)]
for (i in 1:length(cualArreglar)) {
x<-i%%2
if(x==0){
delitos3$Subtipo.de.delito[delitos3$Modalidad==cualArreglar[i]]<-sub("Sin violencia","", cualArreglar[i])
delitos3$Modalidad[delitos3$Modalidad==cualArreglar[i]]<-"Sin violencia"
}else{
delitos3$Subtipo.de.delito[delitos3$Modalidad==cualArreglar[i]]<-sub("Con violencia","", cualArreglar[i])
delitos3$Modalidad[delitos3$Modalidad==cualArreglar[i]]<-"Con violencia"
}
}
# esto es casi copia del primer modulo, delitos por estado
RobosPorEstadoAnual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos3,delitos3$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosPorEstadoAnual<-cbind(RobosPorEstadoAnual,mitab)
}
names(RobosPorEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
Robos por estado y año
kable(RobosPorEstadoAnual)
1 |
10719 |
11412 |
15205 |
15697 |
12988 |
6965 |
2 |
48838 |
48708 |
51385 |
40705 |
37180 |
18894 |
3 |
9113 |
11365 |
10797 |
10350 |
8625 |
3841 |
4 |
858 |
1091 |
883 |
981 |
1063 |
606 |
5 |
13140 |
10628 |
10438 |
8866 |
6653 |
4371 |
6 |
2986 |
7086 |
8336 |
8163 |
7547 |
3945 |
7 |
7930 |
8996 |
9160 |
9336 |
6410 |
2383 |
8 |
16139 |
13475 |
17366 |
16509 |
16186 |
8929 |
9 |
77435 |
81555 |
102714 |
123514 |
109429 |
51554 |
10 |
10363 |
9835 |
11158 |
10629 |
10060 |
6043 |
11 |
31655 |
35063 |
39809 |
42982 |
42732 |
23319 |
12 |
12600 |
11613 |
10286 |
8383 |
7564 |
3845 |
13 |
9866 |
11403 |
14400 |
14641 |
14873 |
7765 |
14 |
27501 |
58804 |
88606 |
85035 |
76243 |
35920 |
15 |
168652 |
149203 |
161155 |
167529 |
157281 |
90884 |
16 |
16001 |
16313 |
18262 |
18611 |
17106 |
9415 |
17 |
20564 |
19641 |
17686 |
17313 |
16301 |
10057 |
18 |
1468 |
795 |
584 |
1172 |
735 |
531 |
19 |
14534 |
19000 |
16877 |
15793 |
14235 |
10584 |
20 |
1737 |
9919 |
10887 |
12541 |
13153 |
6991 |
21 |
23166 |
21691 |
29621 |
32477 |
35887 |
16698 |
22 |
17633 |
22119 |
27020 |
27836 |
26816 |
15091 |
23 |
12652 |
7102 |
11441 |
14318 |
20050 |
10456 |
24 |
6033 |
7854 |
11850 |
13991 |
16495 |
8467 |
25 |
10115 |
8628 |
9885 |
8608 |
7155 |
4149 |
26 |
9997 |
16021 |
10456 |
7470 |
7291 |
6453 |
27 |
18091 |
23178 |
25469 |
25059 |
20167 |
8504 |
28 |
19273 |
15541 |
16175 |
14098 |
13019 |
5825 |
29 |
4736 |
4703 |
5360 |
4296 |
2822 |
1652 |
30 |
17841 |
16902 |
28262 |
23595 |
29887 |
14732 |
31 |
3625 |
2664 |
2218 |
2371 |
2625 |
434 |
32 |
7386 |
7047 |
7348 |
7733 |
7378 |
4085 |
Robos con violencia por estado y año
RobosConViolenciaPorEstadoAnual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(delitos3,delitos3$Ano==losAnos[i] & delitos3$Modalidad=="Con violencia")
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosConViolenciaPorEstadoAnual<-cbind(RobosConViolenciaPorEstadoAnual,mitab)
}
names(RobosConViolenciaPorEstadoAnual)<-c("clave de la entidad",paste0("year",losAnos))
kable(RobosConViolenciaPorEstadoAnual)
1 |
838 |
883 |
1122 |
1245 |
1198 |
657 |
2 |
9250 |
10360 |
12544 |
9908 |
10497 |
5603 |
3 |
698 |
827 |
1037 |
924 |
889 |
437 |
4 |
185 |
137 |
150 |
226 |
210 |
171 |
5 |
2221 |
1466 |
1471 |
1124 |
511 |
416 |
6 |
418 |
1123 |
1136 |
1015 |
447 |
76 |
7 |
5767 |
5701 |
5268 |
5528 |
3883 |
1184 |
8 |
2241 |
1592 |
1949 |
1562 |
1626 |
1017 |
9 |
23710 |
21483 |
28456 |
42686 |
37558 |
16732 |
10 |
1890 |
1180 |
1001 |
1016 |
694 |
455 |
11 |
6549 |
8497 |
10257 |
12737 |
14903 |
9068 |
12 |
3383 |
4089 |
5530 |
4733 |
3655 |
1788 |
13 |
1390 |
2126 |
3634 |
4609 |
4830 |
2311 |
14 |
6376 |
7494 |
30525 |
28849 |
27471 |
14583 |
15 |
88064 |
58336 |
93723 |
97255 |
86549 |
50314 |
16 |
4207 |
5367 |
6884 |
7379 |
6950 |
4047 |
17 |
6736 |
5769 |
4967 |
4083 |
3510 |
2849 |
18 |
369 |
167 |
121 |
191 |
163 |
101 |
19 |
4148 |
5935 |
4398 |
3752 |
3072 |
1813 |
20 |
814 |
2758 |
3782 |
4683 |
4170 |
2357 |
21 |
9133 |
9249 |
14862 |
18552 |
19754 |
8426 |
22 |
3455 |
2927 |
2682 |
2718 |
2953 |
2090 |
23 |
1721 |
1419 |
2614 |
4297 |
5910 |
3231 |
24 |
1288 |
1590 |
2777 |
3396 |
3562 |
2040 |
25 |
3506 |
3454 |
4622 |
4669 |
3827 |
2034 |
26 |
2569 |
7642 |
4675 |
3213 |
3552 |
3732 |
27 |
9278 |
10331 |
10586 |
14303 |
11973 |
4948 |
28 |
5716 |
4894 |
5953 |
5173 |
4908 |
2375 |
29 |
1331 |
1590 |
2066 |
2101 |
1120 |
575 |
30 |
5171 |
5402 |
12911 |
11496 |
15880 |
6557 |
31 |
230 |
114 |
66 |
59 |
95 |
16 |
32 |
1871 |
1599 |
1775 |
1796 |
1710 |
994 |
Serie mensual de robos totales por Estado
RobosPorEstadoMensual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(delitos3,delitos3$Ano==losAnos[length(losAnos)] & delitos3$meses==losmeses[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosPorEstadoMensual<-cbind(RobosPorEstadoMensual,mitab)
}
names(RobosPorEstadoMensual)<-c("clave de la entidad",losmeses)
kable(RobosPorEstadoMensual)
1 |
1074 |
1014 |
1052 |
670 |
686 |
779 |
833 |
857 |
0 |
0 |
0 |
0 |
2 |
3080 |
2690 |
2966 |
1856 |
1907 |
1982 |
2242 |
2171 |
0 |
0 |
0 |
0 |
3 |
670 |
565 |
574 |
358 |
337 |
459 |
495 |
383 |
0 |
0 |
0 |
0 |
4 |
99 |
80 |
74 |
72 |
76 |
69 |
67 |
69 |
0 |
0 |
0 |
0 |
5 |
503 |
507 |
526 |
382 |
506 |
620 |
705 |
622 |
0 |
0 |
0 |
0 |
6 |
584 |
561 |
500 |
427 |
397 |
458 |
518 |
500 |
0 |
0 |
0 |
0 |
7 |
412 |
346 |
344 |
247 |
239 |
239 |
286 |
270 |
0 |
0 |
0 |
0 |
8 |
1342 |
1275 |
1238 |
961 |
943 |
1019 |
1074 |
1077 |
0 |
0 |
0 |
0 |
9 |
8048 |
8107 |
8182 |
4710 |
4550 |
5297 |
6234 |
6426 |
0 |
0 |
0 |
0 |
10 |
952 |
885 |
782 |
588 |
660 |
654 |
775 |
747 |
0 |
0 |
0 |
0 |
11 |
3761 |
3263 |
3170 |
2387 |
2623 |
2669 |
2724 |
2722 |
0 |
0 |
0 |
0 |
12 |
673 |
622 |
524 |
376 |
348 |
374 |
450 |
478 |
0 |
0 |
0 |
0 |
13 |
1354 |
1246 |
1225 |
823 |
725 |
693 |
803 |
896 |
0 |
0 |
0 |
0 |
14 |
5673 |
4857 |
4659 |
3628 |
3820 |
4215 |
4619 |
4449 |
0 |
0 |
0 |
0 |
15 |
12833 |
12050 |
11787 |
10474 |
10134 |
10693 |
11410 |
11503 |
0 |
0 |
0 |
0 |
16 |
1465 |
1273 |
1361 |
886 |
1050 |
1060 |
1181 |
1139 |
0 |
0 |
0 |
0 |
17 |
1410 |
1349 |
1477 |
1010 |
1059 |
1176 |
1286 |
1290 |
0 |
0 |
0 |
0 |
18 |
76 |
73 |
92 |
45 |
65 |
49 |
71 |
60 |
0 |
0 |
0 |
0 |
19 |
1493 |
1582 |
1488 |
1202 |
1194 |
1236 |
1153 |
1236 |
0 |
0 |
0 |
0 |
20 |
1037 |
1110 |
1015 |
728 |
730 |
730 |
844 |
797 |
0 |
0 |
0 |
0 |
21 |
2384 |
2206 |
2326 |
1901 |
1883 |
1892 |
2099 |
2007 |
0 |
0 |
0 |
0 |
22 |
2172 |
2048 |
2078 |
1640 |
1597 |
1612 |
1934 |
2010 |
0 |
0 |
0 |
0 |
23 |
1894 |
1555 |
1602 |
852 |
839 |
1203 |
1301 |
1210 |
0 |
0 |
0 |
0 |
24 |
1458 |
1303 |
1125 |
773 |
821 |
948 |
1090 |
949 |
0 |
0 |
0 |
0 |
25 |
569 |
536 |
535 |
365 |
479 |
525 |
496 |
644 |
0 |
0 |
0 |
0 |
26 |
967 |
797 |
754 |
704 |
822 |
751 |
961 |
697 |
0 |
0 |
0 |
0 |
27 |
1585 |
1355 |
1259 |
648 |
592 |
892 |
1040 |
1133 |
0 |
0 |
0 |
0 |
28 |
983 |
900 |
831 |
519 |
575 |
741 |
607 |
669 |
0 |
0 |
0 |
0 |
29 |
188 |
192 |
186 |
176 |
193 |
208 |
244 |
265 |
0 |
0 |
0 |
0 |
30 |
2205 |
2185 |
2147 |
1469 |
1376 |
1828 |
1772 |
1750 |
0 |
0 |
0 |
0 |
31 |
133 |
71 |
55 |
36 |
30 |
55 |
22 |
32 |
0 |
0 |
0 |
0 |
32 |
712 |
591 |
575 |
366 |
402 |
472 |
495 |
472 |
0 |
0 |
0 |
0 |
Serie mensual de robos con violencia por Estado
RobosConViolenciaPorEstadoMensual<-as.data.frame(order(unique(delitos3$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(delitos3,delitos3$Ano==losAnos[length(losAnos)] & delitos3$Modalidad=="Con violencia" & delitos3$meses==losmeses[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
RobosConViolenciaPorEstadoMensual<-cbind(RobosConViolenciaPorEstadoMensual,mitab)
}
names(RobosConViolenciaPorEstadoMensual)<-c("clave de la entidad",losmeses)
kable(RobosConViolenciaPorEstadoMensual)
1 |
105 |
102 |
94 |
59 |
85 |
65 |
70 |
77 |
0 |
0 |
0 |
0 |
2 |
904 |
845 |
955 |
580 |
588 |
545 |
566 |
620 |
0 |
0 |
0 |
0 |
3 |
56 |
74 |
87 |
63 |
33 |
43 |
49 |
32 |
0 |
0 |
0 |
0 |
4 |
26 |
24 |
22 |
22 |
22 |
18 |
14 |
23 |
0 |
0 |
0 |
0 |
5 |
24 |
41 |
47 |
26 |
55 |
81 |
68 |
74 |
0 |
0 |
0 |
0 |
6 |
11 |
10 |
7 |
10 |
5 |
11 |
13 |
9 |
0 |
0 |
0 |
0 |
7 |
207 |
178 |
177 |
117 |
103 |
134 |
137 |
131 |
0 |
0 |
0 |
0 |
8 |
138 |
142 |
148 |
116 |
101 |
123 |
115 |
134 |
0 |
0 |
0 |
0 |
9 |
2526 |
2531 |
2690 |
1670 |
1614 |
1668 |
2028 |
2005 |
0 |
0 |
0 |
0 |
10 |
73 |
66 |
80 |
34 |
34 |
32 |
69 |
67 |
0 |
0 |
0 |
0 |
11 |
1400 |
1126 |
1185 |
963 |
1128 |
1085 |
1150 |
1031 |
0 |
0 |
0 |
0 |
12 |
296 |
266 |
227 |
174 |
180 |
182 |
242 |
221 |
0 |
0 |
0 |
0 |
13 |
378 |
347 |
310 |
224 |
224 |
209 |
279 |
340 |
0 |
0 |
0 |
0 |
14 |
2032 |
1795 |
1857 |
1735 |
1793 |
1719 |
1828 |
1824 |
0 |
0 |
0 |
0 |
15 |
6777 |
6395 |
6372 |
6064 |
5751 |
6169 |
6514 |
6272 |
0 |
0 |
0 |
0 |
16 |
582 |
473 |
620 |
462 |
489 |
466 |
495 |
460 |
0 |
0 |
0 |
0 |
17 |
324 |
310 |
345 |
328 |
373 |
401 |
387 |
381 |
0 |
0 |
0 |
0 |
18 |
16 |
12 |
14 |
13 |
7 |
7 |
15 |
17 |
0 |
0 |
0 |
0 |
19 |
263 |
274 |
236 |
204 |
204 |
215 |
206 |
211 |
0 |
0 |
0 |
0 |
20 |
310 |
358 |
270 |
274 |
269 |
280 |
344 |
252 |
0 |
0 |
0 |
0 |
21 |
1153 |
1083 |
1158 |
985 |
996 |
979 |
1096 |
976 |
0 |
0 |
0 |
0 |
22 |
262 |
251 |
285 |
235 |
237 |
265 |
298 |
257 |
0 |
0 |
0 |
0 |
23 |
585 |
397 |
493 |
403 |
362 |
416 |
325 |
250 |
0 |
0 |
0 |
0 |
24 |
334 |
281 |
247 |
200 |
174 |
265 |
281 |
258 |
0 |
0 |
0 |
0 |
25 |
252 |
240 |
295 |
188 |
236 |
280 |
225 |
318 |
0 |
0 |
0 |
0 |
26 |
570 |
479 |
445 |
392 |
474 |
437 |
512 |
423 |
0 |
0 |
0 |
0 |
27 |
914 |
833 |
752 |
361 |
319 |
492 |
615 |
662 |
0 |
0 |
0 |
0 |
28 |
386 |
339 |
338 |
218 |
242 |
309 |
252 |
291 |
0 |
0 |
0 |
0 |
29 |
53 |
63 |
70 |
65 |
59 |
70 |
98 |
97 |
0 |
0 |
0 |
0 |
30 |
887 |
904 |
878 |
677 |
701 |
875 |
839 |
796 |
0 |
0 |
0 |
0 |
31 |
3 |
0 |
3 |
3 |
2 |
1 |
1 |
3 |
0 |
0 |
0 |
0 |
32 |
167 |
148 |
115 |
108 |
95 |
126 |
136 |
99 |
0 |
0 |
0 |
0 |
Porcentaje de robos con violencia por mes
prvm<-RobosPorEstadoMensual
prvm[,2:13]<-round(RobosConViolenciaPorEstadoMensual[,2:13]/RobosPorEstadoMensual[,2:13]*100,2)
names(prvm)<-c("Entidad",levels(losmeses))
kable(prvm)
1 |
9.78 |
10.06 |
8.94 |
8.81 |
12.39 |
8.34 |
8.40 |
8.98 |
NaN |
NaN |
NaN |
NaN |
2 |
29.35 |
31.41 |
32.20 |
31.25 |
30.83 |
27.50 |
25.25 |
28.56 |
NaN |
NaN |
NaN |
NaN |
3 |
8.36 |
13.10 |
15.16 |
17.60 |
9.79 |
9.37 |
9.90 |
8.36 |
NaN |
NaN |
NaN |
NaN |
4 |
26.26 |
30.00 |
29.73 |
30.56 |
28.95 |
26.09 |
20.90 |
33.33 |
NaN |
NaN |
NaN |
NaN |
5 |
4.77 |
8.09 |
8.94 |
6.81 |
10.87 |
13.06 |
9.65 |
11.90 |
NaN |
NaN |
NaN |
NaN |
6 |
1.88 |
1.78 |
1.40 |
2.34 |
1.26 |
2.40 |
2.51 |
1.80 |
NaN |
NaN |
NaN |
NaN |
7 |
50.24 |
51.45 |
51.45 |
47.37 |
43.10 |
56.07 |
47.90 |
48.52 |
NaN |
NaN |
NaN |
NaN |
8 |
10.28 |
11.14 |
11.95 |
12.07 |
10.71 |
12.07 |
10.71 |
12.44 |
NaN |
NaN |
NaN |
NaN |
9 |
31.39 |
31.22 |
32.88 |
35.46 |
35.47 |
31.49 |
32.53 |
31.20 |
NaN |
NaN |
NaN |
NaN |
10 |
7.67 |
7.46 |
10.23 |
5.78 |
5.15 |
4.89 |
8.90 |
8.97 |
NaN |
NaN |
NaN |
NaN |
11 |
37.22 |
34.51 |
37.38 |
40.34 |
43.00 |
40.65 |
42.22 |
37.88 |
NaN |
NaN |
NaN |
NaN |
12 |
43.98 |
42.77 |
43.32 |
46.28 |
51.72 |
48.66 |
53.78 |
46.23 |
NaN |
NaN |
NaN |
NaN |
13 |
27.92 |
27.85 |
25.31 |
27.22 |
30.90 |
30.16 |
34.74 |
37.95 |
NaN |
NaN |
NaN |
NaN |
14 |
35.82 |
36.96 |
39.86 |
47.82 |
46.94 |
40.78 |
39.58 |
41.00 |
NaN |
NaN |
NaN |
NaN |
15 |
52.81 |
53.07 |
54.06 |
57.90 |
56.75 |
57.69 |
57.09 |
54.52 |
NaN |
NaN |
NaN |
NaN |
16 |
39.73 |
37.16 |
45.55 |
52.14 |
46.57 |
43.96 |
41.91 |
40.39 |
NaN |
NaN |
NaN |
NaN |
17 |
22.98 |
22.98 |
23.36 |
32.48 |
35.22 |
34.10 |
30.09 |
29.53 |
NaN |
NaN |
NaN |
NaN |
18 |
21.05 |
16.44 |
15.22 |
28.89 |
10.77 |
14.29 |
21.13 |
28.33 |
NaN |
NaN |
NaN |
NaN |
19 |
17.62 |
17.32 |
15.86 |
16.97 |
17.09 |
17.39 |
17.87 |
17.07 |
NaN |
NaN |
NaN |
NaN |
20 |
29.89 |
32.25 |
26.60 |
37.64 |
36.85 |
38.36 |
40.76 |
31.62 |
NaN |
NaN |
NaN |
NaN |
21 |
48.36 |
49.09 |
49.79 |
51.81 |
52.89 |
51.74 |
52.22 |
48.63 |
NaN |
NaN |
NaN |
NaN |
22 |
12.06 |
12.26 |
13.72 |
14.33 |
14.84 |
16.44 |
15.41 |
12.79 |
NaN |
NaN |
NaN |
NaN |
23 |
30.89 |
25.53 |
30.77 |
47.30 |
43.15 |
34.58 |
24.98 |
20.66 |
NaN |
NaN |
NaN |
NaN |
24 |
22.91 |
21.57 |
21.96 |
25.87 |
21.19 |
27.95 |
25.78 |
27.19 |
NaN |
NaN |
NaN |
NaN |
25 |
44.29 |
44.78 |
55.14 |
51.51 |
49.27 |
53.33 |
45.36 |
49.38 |
NaN |
NaN |
NaN |
NaN |
26 |
58.95 |
60.10 |
59.02 |
55.68 |
57.66 |
58.19 |
53.28 |
60.69 |
NaN |
NaN |
NaN |
NaN |
27 |
57.67 |
61.48 |
59.73 |
55.71 |
53.89 |
55.16 |
59.13 |
58.43 |
NaN |
NaN |
NaN |
NaN |
28 |
39.27 |
37.67 |
40.67 |
42.00 |
42.09 |
41.70 |
41.52 |
43.50 |
NaN |
NaN |
NaN |
NaN |
29 |
28.19 |
32.81 |
37.63 |
36.93 |
30.57 |
33.65 |
40.16 |
36.60 |
NaN |
NaN |
NaN |
NaN |
30 |
40.23 |
41.37 |
40.89 |
46.09 |
50.94 |
47.87 |
47.35 |
45.49 |
NaN |
NaN |
NaN |
NaN |
31 |
2.26 |
0.00 |
5.45 |
8.33 |
6.67 |
1.82 |
4.55 |
9.38 |
NaN |
NaN |
NaN |
NaN |
32 |
23.46 |
25.04 |
20.00 |
29.51 |
23.63 |
26.69 |
27.47 |
20.97 |
NaN |
NaN |
NaN |
NaN |
Porcentajes por mes a nivel nacional
t<-colSums(RobosPorEstadoMensual[,2:13])
k<-colSums(RobosConViolenciaPorEstadoMensual[,2:13])
z<-round(k/t*100,2)
names(z)<-losmeses
kable(z)
Enero |
35.63 |
Febrero |
35.65 |
Marzo |
36.85 |
Abril |
41.12 |
Mayo |
40.70 |
Junio |
39.41 |
Julio |
38.66 |
Agosto |
37.58 |
Septiembre |
NaN |
Octubre |
NaN |
Noviembre |
NaN |
Diciembre |
NaN |
Porcentaje de robos con violencia por estado y año
prv<-RobosPorEstadoAnual
prv[,2:7]<-round(RobosConViolenciaPorEstadoAnual[,2:7]/RobosPorEstadoAnual[,2:7]*100,2)
kable(prv)
1 |
7.82 |
7.74 |
7.38 |
7.93 |
9.22 |
9.43 |
2 |
18.94 |
21.27 |
24.41 |
24.34 |
28.23 |
29.65 |
3 |
7.66 |
7.28 |
9.60 |
8.93 |
10.31 |
11.38 |
4 |
21.56 |
12.56 |
16.99 |
23.04 |
19.76 |
28.22 |
5 |
16.90 |
13.79 |
14.09 |
12.68 |
7.68 |
9.52 |
6 |
14.00 |
15.85 |
13.63 |
12.43 |
5.92 |
1.93 |
7 |
72.72 |
63.37 |
57.51 |
59.21 |
60.58 |
49.69 |
8 |
13.89 |
11.81 |
11.22 |
9.46 |
10.05 |
11.39 |
9 |
30.62 |
26.34 |
27.70 |
34.56 |
34.32 |
32.46 |
10 |
18.24 |
12.00 |
8.97 |
9.56 |
6.90 |
7.53 |
11 |
20.69 |
24.23 |
25.77 |
29.63 |
34.88 |
38.89 |
12 |
26.85 |
35.21 |
53.76 |
56.46 |
48.32 |
46.50 |
13 |
14.09 |
18.64 |
25.24 |
31.48 |
32.47 |
29.76 |
14 |
23.18 |
12.74 |
34.45 |
33.93 |
36.03 |
40.60 |
15 |
52.22 |
39.10 |
58.16 |
58.05 |
55.03 |
55.36 |
16 |
26.29 |
32.90 |
37.70 |
39.65 |
40.63 |
42.98 |
17 |
32.76 |
29.37 |
28.08 |
23.58 |
21.53 |
28.33 |
18 |
25.14 |
21.01 |
20.72 |
16.30 |
22.18 |
19.02 |
19 |
28.54 |
31.24 |
26.06 |
23.76 |
21.58 |
17.13 |
20 |
46.86 |
27.81 |
34.74 |
37.34 |
31.70 |
33.71 |
21 |
39.42 |
42.64 |
50.17 |
57.12 |
55.05 |
50.46 |
22 |
19.59 |
13.23 |
9.93 |
9.76 |
11.01 |
13.85 |
23 |
13.60 |
19.98 |
22.85 |
30.01 |
29.48 |
30.90 |
24 |
21.35 |
20.24 |
23.43 |
24.27 |
21.59 |
24.09 |
25 |
34.66 |
40.03 |
46.76 |
54.24 |
53.49 |
49.02 |
26 |
25.70 |
47.70 |
44.71 |
43.01 |
48.72 |
57.83 |
27 |
51.29 |
44.57 |
41.56 |
57.08 |
59.37 |
58.18 |
28 |
29.66 |
31.49 |
36.80 |
36.69 |
37.70 |
40.77 |
29 |
28.10 |
33.81 |
38.54 |
48.91 |
39.69 |
34.81 |
30 |
28.98 |
31.96 |
45.68 |
48.72 |
53.13 |
44.51 |
31 |
6.34 |
4.28 |
2.98 |
2.49 |
3.62 |
3.69 |
32 |
25.33 |
22.69 |
24.16 |
23.23 |
23.18 |
24.33 |
posicionQRO2020<-length(prv$year2020[prv$year2020>prv$year2020[22]])+1
Querétaro es el estado numero 25 con más robos con violencia.
Los robos con más violencia en 2020 (Nacional)
losRobos<-as.data.frame(sort(unique(delitos3$Subtipo.de.delito)))
mods=unique(delitos3$Modalidad)
for (i in 1:length(mods)) {
a <-delitos3[delitos3$Ano==losAnos[length(losAnos)] & delitos3$Modalidad==mods[i],]
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
losRobos<-cbind(losRobos,b)
}
losRobos$total<-apply(losRobos[,2:3],MARGIN = 1,FUN = sum)
losRobos$cv<-round(losRobos[,2]/losRobos$total*100,2)
losRobos$sv<-round(losRobos[,3]/losRobos$total*100,2)
losRobos<-losRobos[order(losRobos$cv,decreasing = TRUE),]
names(losRobos)<-c("Subtipo",mods,"Total", paste0("Porcentaje con ",mods))
kable(losRobos)
7 |
Robo a transportista |
5394 |
1001 |
6395 |
84.35 |
15.65 |
17 |
Robo en transporte público colectivo |
6171 |
1540 |
7711 |
80.03 |
19.97 |
6 |
Robo a transeúnte en vía pública |
31912 |
8633 |
40545 |
78.71 |
21.29 |
18 |
Robo en transporte público individual |
1088 |
344 |
1432 |
75.98 |
24.02 |
5 |
Robo a transeúnte en espacio abierto al público |
2158 |
828 |
2986 |
72.27 |
27.73 |
3 |
Robo a institución bancaria |
139 |
72 |
211 |
65.88 |
34.12 |
4 |
Robo a negocio |
33787 |
30220 |
64007 |
52.79 |
47.21 |
16 |
Robo en transporte individual |
4393 |
4714 |
9107 |
48.24 |
51.76 |
15 |
Robo de tractores |
56 |
64 |
120 |
46.67 |
53.33 |
10 |
Robo de coche de 4 ruedas |
32456 |
45754 |
78210 |
41.50 |
58.50 |
14 |
Robo de motocicleta |
6397 |
14237 |
20634 |
31.00 |
69.00 |
1 |
Otros robos |
23795 |
90531 |
114326 |
20.81 |
79.19 |
13 |
Robo de herramienta industrial o agrícola |
81 |
311 |
392 |
20.66 |
79.34 |
11 |
Robo de embarcaciones pequeñas y grandes |
4 |
20 |
24 |
16.67 |
83.33 |
2 |
Robo a casa habitación |
4681 |
37639 |
42320 |
11.06 |
88.94 |
12 |
Robo de ganado |
135 |
2597 |
2732 |
4.94 |
95.06 |
9 |
Robo de cables, tubos y otros objetos destinados a servicios públicos |
20 |
473 |
493 |
4.06 |
95.94 |
8 |
Robo de autopartes |
330 |
11413 |
11743 |
2.81 |
97.19 |
Los robos con más violencia en 2020 (Querétaro)
losRobosQro<-as.data.frame(sort(unique(delitos3$Subtipo.de.delito)))
mods=unique(delitos3$Modalidad)
for (i in 1:length(mods)) {
a <-delitos3[delitos3$Ano==losAnos[length(losAnos)] & delitos3$Clave_Ent==22 & delitos3$Modalidad==mods[i],]
b<-as.data.frame(aggregate(a$value~a$Subtipo.de.delito,a,sum))[2]
losRobosQro<-cbind(losRobosQro,b)
}
losRobosQro$total<-apply(losRobosQro[,2:3],MARGIN = 1,FUN = sum)
losRobosQro$cv<-round(losRobosQro[,2]/losRobosQro$total*100,2)
losRobosQro$sv<-round(losRobosQro[,3]/losRobosQro$total*100,2)
losRobosQro<-losRobosQro[order(losRobosQro$cv,decreasing = TRUE),]
names(losRobosQro)<-c("Subtipo",mods,"Total", paste0("Porcentaje con ",mods))
kable(losRobosQro)
5 |
Robo a transeúnte en espacio abierto al público |
41 |
31 |
72 |
56.94 |
43.06 |
16 |
Robo en transporte individual |
143 |
110 |
253 |
56.52 |
43.48 |
6 |
Robo a transeúnte en vía pública |
515 |
438 |
953 |
54.04 |
45.96 |
18 |
Robo en transporte público individual |
48 |
45 |
93 |
51.61 |
48.39 |
17 |
Robo en transporte público colectivo |
125 |
124 |
249 |
50.20 |
49.80 |
4 |
Robo a negocio |
594 |
1417 |
2011 |
29.54 |
70.46 |
13 |
Robo de herramienta industrial o agrícola |
2 |
5 |
7 |
28.57 |
71.43 |
15 |
Robo de tractores |
2 |
5 |
7 |
28.57 |
71.43 |
10 |
Robo de coche de 4 ruedas |
415 |
1519 |
1934 |
21.46 |
78.54 |
14 |
Robo de motocicleta |
30 |
423 |
453 |
6.62 |
93.38 |
2 |
Robo a casa habitación |
83 |
1725 |
1808 |
4.59 |
95.41 |
1 |
Otros robos |
92 |
6555 |
6647 |
1.38 |
98.62 |
8 |
Robo de autopartes |
0 |
490 |
490 |
0.00 |
100.00 |
12 |
Robo de ganado |
0 |
114 |
114 |
0.00 |
100.00 |
3 |
Robo a institución bancaria |
0 |
0 |
0 |
NaN |
NaN |
7 |
Robo a transportista |
0 |
0 |
0 |
NaN |
NaN |
9 |
Robo de cables, tubos y otros objetos destinados a servicios públicos |
0 |
0 |
0 |
NaN |
NaN |
11 |
Robo de embarcaciones pequeñas y grandes |
0 |
0 |
0 |
NaN |
NaN |
Homicidio doloso
Homicidio doloso por entidad y año
hd<-delitos2[delitos2$Subtipo.de.delito=="Homicidio doloso",]
hdEA<-as.data.frame(order(unique(hd$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(hd,hd$Ano==losAnos[i])
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
hdEA<-cbind(hdEA,mitab)
}
names(hdEA)<-c("clave de la entidad",paste0("year",losAnos))
kable(hdEA)
1 |
38 |
39 |
82 |
75 |
91 |
59 |
2 |
821 |
1168 |
2084 |
2797 |
2604 |
1728 |
3 |
151 |
216 |
610 |
162 |
81 |
39 |
4 |
49 |
81 |
66 |
69 |
73 |
51 |
5 |
278 |
212 |
222 |
229 |
222 |
138 |
6 |
162 |
502 |
698 |
616 |
660 |
370 |
7 |
502 |
468 |
475 |
562 |
525 |
291 |
8 |
945 |
1232 |
1566 |
1807 |
2167 |
1657 |
9 |
798 |
906 |
1048 |
1367 |
1397 |
790 |
10 |
236 |
236 |
216 |
180 |
150 |
102 |
11 |
863 |
947 |
1084 |
2609 |
2775 |
2250 |
12 |
2016 |
2213 |
2310 |
2222 |
1580 |
825 |
13 |
146 |
135 |
184 |
203 |
287 |
222 |
14 |
957 |
1105 |
1342 |
1961 |
2023 |
1173 |
15 |
2022 |
2053 |
2032 |
2349 |
2537 |
1648 |
16 |
766 |
1263 |
1249 |
1338 |
1653 |
1291 |
17 |
480 |
586 |
575 |
693 |
911 |
538 |
18 |
83 |
40 |
250 |
329 |
168 |
102 |
19 |
450 |
641 |
613 |
746 |
889 |
595 |
20 |
201 |
738 |
855 |
983 |
1011 |
568 |
21 |
493 |
581 |
894 |
1105 |
1108 |
618 |
22 |
131 |
118 |
175 |
180 |
177 |
121 |
23 |
228 |
165 |
359 |
763 |
685 |
408 |
24 |
241 |
306 |
451 |
457 |
453 |
411 |
25 |
841 |
922 |
1250 |
963 |
822 |
487 |
26 |
589 |
630 |
727 |
745 |
1062 |
870 |
27 |
233 |
276 |
388 |
508 |
564 |
346 |
28 |
533 |
594 |
801 |
851 |
667 |
429 |
29 |
59 |
77 |
120 |
124 |
151 |
72 |
30 |
525 |
1200 |
1722 |
1497 |
1425 |
878 |
31 |
52 |
50 |
37 |
48 |
33 |
29 |
32 |
232 |
449 |
551 |
561 |
510 |
473 |
Homicidio doloso con arma de fuego por entidad y año
hdEAaf<-as.data.frame(order(unique(hd$Clave_Ent)))
for (i in 1:length(losAnos)) {
misub=subset(hd,hd$Ano==losAnos[i] & hd$Modalidad=="Con arma de fuego")
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
hdEAaf<-cbind(hdEAaf,mitab)
}
names(hdEAaf)<-c("clave de la entidad",paste0("year",losAnos))
kable(hdEAaf)
1 |
18 |
19 |
30 |
43 |
56 |
37 |
2 |
497 |
738 |
1473 |
2046 |
1880 |
1268 |
3 |
102 |
180 |
527 |
115 |
33 |
19 |
4 |
15 |
31 |
29 |
26 |
33 |
27 |
5 |
139 |
97 |
101 |
111 |
132 |
75 |
6 |
123 |
377 |
545 |
477 |
542 |
318 |
7 |
171 |
178 |
216 |
263 |
298 |
156 |
8 |
563 |
790 |
973 |
1232 |
1505 |
1143 |
9 |
457 |
556 |
752 |
955 |
1004 |
547 |
10 |
170 |
153 |
137 |
114 |
76 |
50 |
11 |
600 |
677 |
953 |
2135 |
2261 |
1847 |
12 |
1300 |
1474 |
1541 |
1485 |
1191 |
627 |
13 |
65 |
67 |
99 |
122 |
153 |
109 |
14 |
511 |
610 |
800 |
1272 |
1167 |
704 |
15 |
1251 |
1294 |
1334 |
1564 |
1681 |
1130 |
16 |
434 |
867 |
1000 |
1060 |
1296 |
1013 |
17 |
197 |
376 |
339 |
495 |
674 |
396 |
18 |
43 |
16 |
167 |
224 |
93 |
43 |
19 |
231 |
358 |
405 |
548 |
669 |
494 |
20 |
136 |
539 |
654 |
755 |
793 |
442 |
21 |
282 |
318 |
549 |
739 |
780 |
393 |
22 |
52 |
45 |
95 |
91 |
102 |
66 |
23 |
31 |
47 |
206 |
506 |
413 |
268 |
24 |
120 |
201 |
289 |
323 |
299 |
300 |
25 |
686 |
724 |
992 |
725 |
567 |
360 |
26 |
341 |
337 |
498 |
474 |
716 |
564 |
27 |
42 |
95 |
208 |
283 |
420 |
247 |
28 |
241 |
348 |
514 |
530 |
368 |
265 |
29 |
31 |
41 |
53 |
69 |
93 |
36 |
30 |
192 |
572 |
966 |
870 |
863 |
563 |
31 |
10 |
7 |
3 |
8 |
3 |
4 |
32 |
159 |
347 |
443 |
417 |
363 |
349 |
Porcentaje con arma de fuego por entidad y año
porcentajeAnualHD<-hdEA
porcentajeAnualHD[,2:7]<-round(hdEAaf[,2:7]/hdEA[,2:7]*100,2)
names(porcentajeAnualHD)<-c("Entidad",losAnos)
kable(porcentajeAnualHD)
1 |
47.37 |
48.72 |
36.59 |
57.33 |
61.54 |
62.71 |
2 |
60.54 |
63.18 |
70.68 |
73.15 |
72.20 |
73.38 |
3 |
67.55 |
83.33 |
86.39 |
70.99 |
40.74 |
48.72 |
4 |
30.61 |
38.27 |
43.94 |
37.68 |
45.21 |
52.94 |
5 |
50.00 |
45.75 |
45.50 |
48.47 |
59.46 |
54.35 |
6 |
75.93 |
75.10 |
78.08 |
77.44 |
82.12 |
85.95 |
7 |
34.06 |
38.03 |
45.47 |
46.80 |
56.76 |
53.61 |
8 |
59.58 |
64.12 |
62.13 |
68.18 |
69.45 |
68.98 |
9 |
57.27 |
61.37 |
71.76 |
69.86 |
71.87 |
69.24 |
10 |
72.03 |
64.83 |
63.43 |
63.33 |
50.67 |
49.02 |
11 |
69.52 |
71.49 |
87.92 |
81.83 |
81.48 |
82.09 |
12 |
64.48 |
66.61 |
66.71 |
66.83 |
75.38 |
76.00 |
13 |
44.52 |
49.63 |
53.80 |
60.10 |
53.31 |
49.10 |
14 |
53.40 |
55.20 |
59.61 |
64.86 |
57.69 |
60.02 |
15 |
61.87 |
63.03 |
65.65 |
66.58 |
66.26 |
68.57 |
16 |
56.66 |
68.65 |
80.06 |
79.22 |
78.40 |
78.47 |
17 |
41.04 |
64.16 |
58.96 |
71.43 |
73.98 |
73.61 |
18 |
51.81 |
40.00 |
66.80 |
68.09 |
55.36 |
42.16 |
19 |
51.33 |
55.85 |
66.07 |
73.46 |
75.25 |
83.03 |
20 |
67.66 |
73.04 |
76.49 |
76.81 |
78.44 |
77.82 |
21 |
57.20 |
54.73 |
61.41 |
66.88 |
70.40 |
63.59 |
22 |
39.69 |
38.14 |
54.29 |
50.56 |
57.63 |
54.55 |
23 |
13.60 |
28.48 |
57.38 |
66.32 |
60.29 |
65.69 |
24 |
49.79 |
65.69 |
64.08 |
70.68 |
66.00 |
72.99 |
25 |
81.57 |
78.52 |
79.36 |
75.29 |
68.98 |
73.92 |
26 |
57.89 |
53.49 |
68.50 |
63.62 |
67.42 |
64.83 |
27 |
18.03 |
34.42 |
53.61 |
55.71 |
74.47 |
71.39 |
28 |
45.22 |
58.59 |
64.17 |
62.28 |
55.17 |
61.77 |
29 |
52.54 |
53.25 |
44.17 |
55.65 |
61.59 |
50.00 |
30 |
36.57 |
47.67 |
56.10 |
58.12 |
60.56 |
64.12 |
31 |
19.23 |
14.00 |
8.11 |
16.67 |
9.09 |
13.79 |
32 |
68.53 |
77.28 |
80.40 |
74.33 |
71.18 |
73.78 |
Homicidio doloso por mes y entidad
hdEM<-as.data.frame(order(unique(hd$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(hd,hd$meses==losmeses[i] & hd$Ano==2020)
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
hdEM<-cbind(hdEM,mitab)
}
names(hdEM)<-c("clave de la entidad",levels(losmeses))
kable(hdEM)
1 |
4 |
9 |
7 |
4 |
11 |
8 |
10 |
6 |
0 |
0 |
0 |
0 |
2 |
193 |
169 |
225 |
220 |
240 |
196 |
239 |
246 |
0 |
0 |
0 |
0 |
3 |
6 |
2 |
2 |
3 |
7 |
5 |
6 |
8 |
0 |
0 |
0 |
0 |
4 |
4 |
9 |
8 |
3 |
6 |
5 |
7 |
9 |
0 |
0 |
0 |
0 |
5 |
26 |
12 |
21 |
11 |
9 |
21 |
22 |
16 |
0 |
0 |
0 |
0 |
6 |
56 |
57 |
49 |
54 |
52 |
42 |
34 |
26 |
0 |
0 |
0 |
0 |
7 |
35 |
34 |
27 |
33 |
32 |
40 |
42 |
48 |
0 |
0 |
0 |
0 |
8 |
162 |
172 |
223 |
221 |
194 |
227 |
214 |
244 |
0 |
0 |
0 |
0 |
9 |
107 |
95 |
120 |
111 |
97 |
96 |
91 |
73 |
0 |
0 |
0 |
0 |
10 |
3 |
14 |
11 |
16 |
13 |
7 |
19 |
19 |
0 |
0 |
0 |
0 |
11 |
308 |
257 |
282 |
276 |
282 |
286 |
289 |
270 |
0 |
0 |
0 |
0 |
12 |
102 |
97 |
128 |
116 |
107 |
78 |
86 |
111 |
0 |
0 |
0 |
0 |
13 |
29 |
22 |
30 |
22 |
23 |
30 |
33 |
33 |
0 |
0 |
0 |
0 |
14 |
150 |
129 |
170 |
155 |
144 |
144 |
150 |
131 |
0 |
0 |
0 |
0 |
15 |
182 |
203 |
260 |
213 |
204 |
185 |
202 |
199 |
0 |
0 |
0 |
0 |
16 |
169 |
177 |
182 |
175 |
153 |
132 |
143 |
160 |
0 |
0 |
0 |
0 |
17 |
57 |
70 |
77 |
78 |
64 |
66 |
63 |
63 |
0 |
0 |
0 |
0 |
18 |
18 |
14 |
10 |
10 |
17 |
11 |
10 |
12 |
0 |
0 |
0 |
0 |
19 |
67 |
73 |
80 |
76 |
78 |
87 |
60 |
74 |
0 |
0 |
0 |
0 |
20 |
91 |
56 |
83 |
73 |
76 |
57 |
62 |
70 |
0 |
0 |
0 |
0 |
21 |
74 |
71 |
82 |
92 |
76 |
65 |
76 |
82 |
0 |
0 |
0 |
0 |
22 |
11 |
11 |
26 |
11 |
18 |
8 |
15 |
21 |
0 |
0 |
0 |
0 |
23 |
59 |
65 |
64 |
50 |
41 |
33 |
51 |
45 |
0 |
0 |
0 |
0 |
24 |
39 |
43 |
43 |
40 |
54 |
50 |
70 |
72 |
0 |
0 |
0 |
0 |
25 |
54 |
53 |
69 |
51 |
56 |
70 |
69 |
65 |
0 |
0 |
0 |
0 |
26 |
104 |
105 |
86 |
104 |
124 |
101 |
117 |
129 |
0 |
0 |
0 |
0 |
27 |
50 |
47 |
54 |
30 |
30 |
36 |
54 |
45 |
0 |
0 |
0 |
0 |
28 |
57 |
73 |
46 |
47 |
51 |
49 |
55 |
51 |
0 |
0 |
0 |
0 |
29 |
14 |
9 |
13 |
5 |
5 |
8 |
9 |
9 |
0 |
0 |
0 |
0 |
30 |
98 |
100 |
98 |
116 |
90 |
142 |
104 |
130 |
0 |
0 |
0 |
0 |
31 |
3 |
6 |
2 |
3 |
2 |
6 |
4 |
3 |
0 |
0 |
0 |
0 |
32 |
39 |
53 |
52 |
56 |
66 |
75 |
63 |
69 |
0 |
0 |
0 |
0 |
Homicidio doloso con arma de fuego por mes y entidad
hdEMAF<-as.data.frame(order(unique(hd$Clave_Ent)))
for (i in 1:length(losmeses)) {
misub=subset(hd,hd$meses==losmeses[i] & hd$Ano==2020 & hd$Modalidad=="Con arma de fuego")
mitab<-as.data.frame(aggregate(misub$value~misub$Clave_Ent,misub,sum))[2]
hdEMAF<-cbind(hdEMAF,mitab)
}
names(hdEMAF)<-c("clave de la entidad",levels(losmeses))
kable(hdEMAF)
1 |
3 |
6 |
3 |
4 |
6 |
5 |
7 |
3 |
0 |
0 |
0 |
0 |
2 |
146 |
117 |
170 |
179 |
179 |
140 |
163 |
174 |
0 |
0 |
0 |
0 |
3 |
5 |
0 |
2 |
0 |
2 |
4 |
2 |
4 |
0 |
0 |
0 |
0 |
4 |
3 |
3 |
5 |
2 |
3 |
2 |
3 |
6 |
0 |
0 |
0 |
0 |
5 |
19 |
5 |
8 |
8 |
3 |
12 |
12 |
8 |
0 |
0 |
0 |
0 |
6 |
49 |
52 |
43 |
46 |
45 |
36 |
27 |
20 |
0 |
0 |
0 |
0 |
7 |
18 |
16 |
15 |
16 |
14 |
27 |
28 |
22 |
0 |
0 |
0 |
0 |
8 |
123 |
126 |
160 |
159 |
129 |
159 |
138 |
149 |
0 |
0 |
0 |
0 |
9 |
72 |
71 |
78 |
73 |
68 |
67 |
63 |
55 |
0 |
0 |
0 |
0 |
10 |
0 |
8 |
8 |
7 |
6 |
2 |
11 |
8 |
0 |
0 |
0 |
0 |
11 |
256 |
202 |
211 |
221 |
245 |
251 |
251 |
210 |
0 |
0 |
0 |
0 |
12 |
76 |
76 |
96 |
90 |
82 |
62 |
68 |
77 |
0 |
0 |
0 |
0 |
13 |
14 |
12 |
19 |
11 |
8 |
11 |
22 |
12 |
0 |
0 |
0 |
0 |
14 |
89 |
80 |
102 |
98 |
79 |
90 |
92 |
74 |
0 |
0 |
0 |
0 |
15 |
129 |
139 |
176 |
151 |
140 |
127 |
144 |
124 |
0 |
0 |
0 |
0 |
16 |
134 |
137 |
144 |
137 |
126 |
96 |
118 |
121 |
0 |
0 |
0 |
0 |
17 |
42 |
52 |
66 |
57 |
48 |
44 |
46 |
41 |
0 |
0 |
0 |
0 |
18 |
11 |
4 |
1 |
8 |
7 |
1 |
7 |
4 |
0 |
0 |
0 |
0 |
19 |
53 |
65 |
66 |
63 |
69 |
70 |
49 |
59 |
0 |
0 |
0 |
0 |
20 |
82 |
35 |
66 |
57 |
60 |
46 |
50 |
46 |
0 |
0 |
0 |
0 |
21 |
44 |
55 |
63 |
57 |
45 |
38 |
41 |
50 |
0 |
0 |
0 |
0 |
22 |
7 |
6 |
13 |
6 |
8 |
6 |
10 |
10 |
0 |
0 |
0 |
0 |
23 |
39 |
47 |
45 |
30 |
25 |
20 |
32 |
30 |
0 |
0 |
0 |
0 |
24 |
26 |
23 |
31 |
31 |
45 |
34 |
55 |
55 |
0 |
0 |
0 |
0 |
25 |
38 |
41 |
50 |
42 |
43 |
51 |
51 |
44 |
0 |
0 |
0 |
0 |
26 |
74 |
75 |
65 |
72 |
78 |
60 |
72 |
68 |
0 |
0 |
0 |
0 |
27 |
36 |
33 |
37 |
24 |
22 |
21 |
40 |
34 |
0 |
0 |
0 |
0 |
28 |
37 |
53 |
30 |
25 |
30 |
34 |
30 |
26 |
0 |
0 |
0 |
0 |
29 |
10 |
5 |
8 |
3 |
1 |
3 |
1 |
5 |
0 |
0 |
0 |
0 |
30 |
66 |
61 |
64 |
70 |
60 |
91 |
57 |
94 |
0 |
0 |
0 |
0 |
31 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
32 |
32 |
36 |
34 |
40 |
45 |
56 |
54 |
52 |
0 |
0 |
0 |
0 |
Porcentaje de homicidios dolosos con arma de fuego por mes
porcentajeHDAF<-hdEM
porcentajeHDAF[,2:13]<-round(hdEMAF[,2:13]/hdEM[,2:13]*100,2)
names(porcentajeHDAF)<-c("Entidad",levels(losmeses))
kable(porcentajeHDAF)
1 |
75.00 |
66.67 |
42.86 |
100.00 |
54.55 |
62.50 |
70.00 |
50.00 |
NaN |
NaN |
NaN |
NaN |
2 |
75.65 |
69.23 |
75.56 |
81.36 |
74.58 |
71.43 |
68.20 |
70.73 |
NaN |
NaN |
NaN |
NaN |
3 |
83.33 |
0.00 |
100.00 |
0.00 |
28.57 |
80.00 |
33.33 |
50.00 |
NaN |
NaN |
NaN |
NaN |
4 |
75.00 |
33.33 |
62.50 |
66.67 |
50.00 |
40.00 |
42.86 |
66.67 |
NaN |
NaN |
NaN |
NaN |
5 |
73.08 |
41.67 |
38.10 |
72.73 |
33.33 |
57.14 |
54.55 |
50.00 |
NaN |
NaN |
NaN |
NaN |
6 |
87.50 |
91.23 |
87.76 |
85.19 |
86.54 |
85.71 |
79.41 |
76.92 |
NaN |
NaN |
NaN |
NaN |
7 |
51.43 |
47.06 |
55.56 |
48.48 |
43.75 |
67.50 |
66.67 |
45.83 |
NaN |
NaN |
NaN |
NaN |
8 |
75.93 |
73.26 |
71.75 |
71.95 |
66.49 |
70.04 |
64.49 |
61.07 |
NaN |
NaN |
NaN |
NaN |
9 |
67.29 |
74.74 |
65.00 |
65.77 |
70.10 |
69.79 |
69.23 |
75.34 |
NaN |
NaN |
NaN |
NaN |
10 |
0.00 |
57.14 |
72.73 |
43.75 |
46.15 |
28.57 |
57.89 |
42.11 |
NaN |
NaN |
NaN |
NaN |
11 |
83.12 |
78.60 |
74.82 |
80.07 |
86.88 |
87.76 |
86.85 |
77.78 |
NaN |
NaN |
NaN |
NaN |
12 |
74.51 |
78.35 |
75.00 |
77.59 |
76.64 |
79.49 |
79.07 |
69.37 |
NaN |
NaN |
NaN |
NaN |
13 |
48.28 |
54.55 |
63.33 |
50.00 |
34.78 |
36.67 |
66.67 |
36.36 |
NaN |
NaN |
NaN |
NaN |
14 |
59.33 |
62.02 |
60.00 |
63.23 |
54.86 |
62.50 |
61.33 |
56.49 |
NaN |
NaN |
NaN |
NaN |
15 |
70.88 |
68.47 |
67.69 |
70.89 |
68.63 |
68.65 |
71.29 |
62.31 |
NaN |
NaN |
NaN |
NaN |
16 |
79.29 |
77.40 |
79.12 |
78.29 |
82.35 |
72.73 |
82.52 |
75.62 |
NaN |
NaN |
NaN |
NaN |
17 |
73.68 |
74.29 |
85.71 |
73.08 |
75.00 |
66.67 |
73.02 |
65.08 |
NaN |
NaN |
NaN |
NaN |
18 |
61.11 |
28.57 |
10.00 |
80.00 |
41.18 |
9.09 |
70.00 |
33.33 |
NaN |
NaN |
NaN |
NaN |
19 |
79.10 |
89.04 |
82.50 |
82.89 |
88.46 |
80.46 |
81.67 |
79.73 |
NaN |
NaN |
NaN |
NaN |
20 |
90.11 |
62.50 |
79.52 |
78.08 |
78.95 |
80.70 |
80.65 |
65.71 |
NaN |
NaN |
NaN |
NaN |
21 |
59.46 |
77.46 |
76.83 |
61.96 |
59.21 |
58.46 |
53.95 |
60.98 |
NaN |
NaN |
NaN |
NaN |
22 |
63.64 |
54.55 |
50.00 |
54.55 |
44.44 |
75.00 |
66.67 |
47.62 |
NaN |
NaN |
NaN |
NaN |
23 |
66.10 |
72.31 |
70.31 |
60.00 |
60.98 |
60.61 |
62.75 |
66.67 |
NaN |
NaN |
NaN |
NaN |
24 |
66.67 |
53.49 |
72.09 |
77.50 |
83.33 |
68.00 |
78.57 |
76.39 |
NaN |
NaN |
NaN |
NaN |
25 |
70.37 |
77.36 |
72.46 |
82.35 |
76.79 |
72.86 |
73.91 |
67.69 |
NaN |
NaN |
NaN |
NaN |
26 |
71.15 |
71.43 |
75.58 |
69.23 |
62.90 |
59.41 |
61.54 |
52.71 |
NaN |
NaN |
NaN |
NaN |
27 |
72.00 |
70.21 |
68.52 |
80.00 |
73.33 |
58.33 |
74.07 |
75.56 |
NaN |
NaN |
NaN |
NaN |
28 |
64.91 |
72.60 |
65.22 |
53.19 |
58.82 |
69.39 |
54.55 |
50.98 |
NaN |
NaN |
NaN |
NaN |
29 |
71.43 |
55.56 |
61.54 |
60.00 |
20.00 |
37.50 |
11.11 |
55.56 |
NaN |
NaN |
NaN |
NaN |
30 |
67.35 |
61.00 |
65.31 |
60.34 |
66.67 |
64.08 |
54.81 |
72.31 |
NaN |
NaN |
NaN |
NaN |
31 |
33.33 |
16.67 |
0.00 |
33.33 |
0.00 |
0.00 |
25.00 |
0.00 |
NaN |
NaN |
NaN |
NaN |
32 |
82.05 |
67.92 |
65.38 |
71.43 |
68.18 |
74.67 |
85.71 |
75.36 |
NaN |
NaN |
NaN |
NaN |
Homicidios por municipio en Querétaro 2020
hdQ2020<-hd[hd$Ano==2020 & hd$Clave_Ent==22,]
hdMUN20<-aggregate(hdQ2020$value~hdQ2020$Municipio,hdQ2020,sum)
names(hdMUN20)<-c("Municipios", "Homicidio doloso en 2020")
kable(hdMUN20)
Amealco de Bonfil |
7 |
Arroyo Seco |
0 |
Cadereyta de Montes |
0 |
Colón |
1 |
Corregidora |
6 |
El Marqués |
17 |
Ezequiel Montes |
7 |
Huimilpan |
4 |
Jalpan de Serra |
0 |
Landa de Matamoros |
2 |
No Especificado |
0 |
Pedro Escobedo |
2 |
Peñamiller |
1 |
Pinal de Amoles |
1 |
Querétaro |
50 |
San Joaquín |
0 |
San Juan del Río |
20 |
Tequisquiapan |
2 |
Tolimán |
1 |
Homicidios dolosos con arma de fuego por municipio en Querétaro 2020
hdAFQ2020<-hd[hd$Ano==2020 & hd$Clave_Ent==22 & hd$Modalidad=="Con arma de fuego",]
hdAFMUN20<-aggregate(hdAFQ2020$value~hdAFQ2020$Municipio,hdQ2020,sum)
names(hdAFMUN20)<-c("Municipios", "Homicidio doloso con arma de fuego en 2020")
kable(hdAFMUN20)
Amealco de Bonfil |
2 |
Arroyo Seco |
0 |
Cadereyta de Montes |
0 |
Colón |
1 |
Corregidora |
3 |
El Marqués |
12 |
Ezequiel Montes |
6 |
Huimilpan |
3 |
Jalpan de Serra |
0 |
Landa de Matamoros |
1 |
No Especificado |
0 |
Pedro Escobedo |
2 |
Peñamiller |
1 |
Pinal de Amoles |
0 |
Querétaro |
20 |
San Joaquín |
0 |
San Juan del Río |
14 |
Tequisquiapan |
1 |
Tolimán |
0 |
Porcentaje de homicidios con arma de fuego por municipio
porcentajeMunicipio<-hdAFMUN20
porcentajeMunicipio[,2]<-round(hdAFMUN20[,2]/hdMUN20[,2]*100,2)
names(porcentajeMunicipio)<-c("Municipio","Porcentaje de homicidios dolosos que se cometieron con arma de fuego en 2020")
kable(porcentajeMunicipio)
Amealco de Bonfil |
28.57 |
Arroyo Seco |
NaN |
Cadereyta de Montes |
NaN |
Colón |
100.00 |
Corregidora |
50.00 |
El Marqués |
70.59 |
Ezequiel Montes |
85.71 |
Huimilpan |
75.00 |
Jalpan de Serra |
NaN |
Landa de Matamoros |
50.00 |
No Especificado |
NaN |
Pedro Escobedo |
100.00 |
Peñamiller |
100.00 |
Pinal de Amoles |
0.00 |
Querétaro |
40.00 |
San Joaquín |
NaN |
San Juan del Río |
70.00 |
Tequisquiapan |
50.00 |
Tolimán |
0.00 |
El futuro
Delitos para preocuparse en Octubre
Aquí se presentan los delitos que en promedio aumentan durante Octubre; con base en el periodo 2015- 2019 , hemos calculado el promedio de los logaritmos de la tasa por cada 100 mil habitantes de cada mes, de cada año, por cada delito. Presentamos los delitos que, en promedio, alcanzan su máximo en Octubre.
anos2<-unique(delitosQRO2020$Ano)
meses2<-unique(delitosQRO2020$meses)
canalDelitos<-catalogoDelitos[,1]
for(i in 1:length(meses2)){
mediamesEntodo<-c()
for(j in 1:length(catalogoDelitos[,1])){
delmes<-subset(delitosQRO2020,delitosQRO2020$meses==meses2[i] & delitosQRO2020$Subtipo.de.delito==catalogoDelitos[j,1])
delmesano<-aggregate(formula=delmes$value~delmes$Ano, data = delmes, FUN = sum)
cuantos<-nrow(delmesano)-1
delmesano<-delmesano[1:cuantos,]
pobs<-ent[22,2:(2+cuantos-1)]
pobs<-t(pobs)
delmesano$pob<-NA
delmesano$tasa<-NA
delmesano$logtasa<-NA
delmesano$pob<-pobs[,1]
delmesano$tasa<-(delmesano[,2])/delmesano$pob*100000
delmesano$logtasa<-log(delmesano$tasa+1)
mimedia<-mean(delmesano$logtasa)
miEE<-1.96*(sd(delmesano$logtasa)/sqrt(cuantos))
mediamesEntodo<-c(mediamesEntodo,mimedia)
}
canalDelitos<-cbind(canalDelitos,as.numeric(mediamesEntodo))
}
canalDelitos<-as.data.frame(canalDelitos)
names(canalDelitos)<-c("Delito",levels(meses2))
for(i in 1:55){
for(j in 2:13){
canalDelitos[i,j]<-as.numeric(canalDelitos[i,j])
}
}
aumentan<-canalDelitos[c("Delito", esteMes,proximo)]
aumentan$aumentan<-NA
aumentan$max<-NA
aumentan$max<-apply(canalDelitos[,2:13],1, max)
aumentan$aumentan<-aumentan[,3]>aumentan[,2]
aumentan$enMaximoAnual<-NA
aumentan$enMaximoAnual<-aumentan$enMaximoAnual<-aumentan$max==aumentan[c(proximo)]
alerta<-cbind(aumentan$Delito[aumentan$enMaximoAnual==TRUE & aumentan$enMaximoAnual!=0],aumentan[aumentan$enMaximoAnual ==TRUE & aumentan$enMaximoAnual!=0,3])
alerta<-as.data.frame(alerta)
names(alerta)<-c("Delito","logTasaPromedio")
miAlerta<-alerta[alerta$logTasaPromedio!=0,]
kable(miAlerta[,1], caption=paste0("Delitos que, en promedio, aumentan en ",proximo))
Delitos que, en promedio, aumentan en Octubre
Falsificación |
Incumplimiento de obligaciones de asistencia familiar |
Lesiones culposas |
Narcomenudeo |
Otros delitos del Fuero Común |
Otros robos |
Robo a negocio |
Robo a transeúnte en vía pública |
Trata de personas |
Violencia familiar |
cual<-miAlerta$Delito[miAlerta$logTasaPromedio==max(miAlerta$logTasaPromedio)]
Comportamiento mensual del delito de mayor riesgo (Otros robos)
esteDelito<-subset(delitosQRO2020,delitosQRO2020$Subtipo.de.delito==cual)
mismeses2<-as.data.frame(levels(delitosQRO2020$meses))
for (i in 1:length(anos2)) {
miano1<-subset(esteDelito,esteDelito$Ano==anos2[i])
aggregate(miano1$value~miano1$meses,miano1,sum)
mismeses2<-cbind(mismeses2,as.data.frame(aggregate(miano1$value~miano1$meses,miano1,sum))[2])
}
names(mismeses2)<-c("Mes",paste0("año ",anos2))
kable(mismeses2, caption = paste0("Serie de tiempo anual y mensual para ",cual))
Serie de tiempo anual y mensual para Otros robos
Enero |
573 |
556 |
716 |
816 |
963 |
938 |
Febrero |
539 |
480 |
710 |
795 |
940 |
911 |
Marzo |
543 |
559 |
797 |
866 |
1015 |
937 |
Abril |
542 |
591 |
710 |
887 |
942 |
736 |
Mayo |
560 |
551 |
777 |
926 |
884 |
732 |
Junio |
557 |
649 |
877 |
947 |
938 |
686 |
Julio |
534 |
719 |
805 |
903 |
967 |
811 |
Agosto |
563 |
788 |
898 |
929 |
978 |
896 |
Septiembre |
580 |
731 |
887 |
865 |
871 |
0 |
Octubre |
627 |
822 |
912 |
931 |
1029 |
0 |
Noviembre |
556 |
724 |
946 |
800 |
950 |
0 |
Diciembre |
494 |
649 |
844 |
828 |
1018 |
0 |